Sélectionner une page

La puce-système NB-IoT avec géopositionnement par satellite du chinois Nurlink est opérationnelle

Dévoilée en avant-première fin février à l’occasion du Mobile World Congress, la puce-système SoC NK6010 compatible NB-IoT de la start-up chinoise Nurlink, créée en 2017, est désormais opérationnelle. Une première communication « réelle », sur la région de Nankin en l’occurrence, a pu être mise en œuvre entre la puce et la plate-forme IoT dans le nuage de China Telecom via le réseau NB-IoT de l’opérateur.

Selon la firme américaine Ceva qui a cédé sous licence à Nurlink sa plate-forme Ceva-Dragonfly NB2, c’est une étape majeure vers la production en volume du SoC de la jeune société chinoise.

Pour rappel, la plate-forme Ceva-Dragonfly NB2, annoncée il y a tout juste un an, est une solution modulaire et intégrée compatible avec la spécification 3GPP Release 14 eNB-IoT (enhanced NB-IoT) dite Cat-NB2 (en référence à la spécification 3GPP Release 13 NB-IoT dite Cat-NB1). Elle s’articule autour du processeur Ceva-X1 bâti sur une architecture DSP+CPU à cœur unique et doté d’instructions ad hoc, et fournit un environnement unifié pour l’exécution à la fois de la couche physique et de la pile de protocoles eNB-IoT (également incluses dans la solution).

Pour les utilisateurs qui développent des produits NB-IoT qui exigent aussi des fonctions de géolocalisation par satellite, la solution Ceva-Dragonfly NB2 dispose en option d’un package matériel GNSS (Global Navigation Satellite System) avec récepteur RF et frontal numérique multiconstellation.

A ce titre, la puce-système NK6010, qui cible des marchés comme les compteurs communicants, les dispositifs électroniques portés sur soi, les traceurs d’actifs et les capteurs industriels, intègre un frontal RF, un émetteur/récepteur RF, un sous-système radio cellulaire en bande de base, une unité de gestion de la consommation et un processeur d’application. Selon son concepteur, elle est apte à communiquer dans toutes les bandes de fréquence NB-IoT exploitées par les opérateurs mobiles les plus importants. Le SoC embarque également un sous-système de positionnement par satellite multiconstellation (GPS, Beidou, Galileo et Glonass) à ultrabasse consommation.

« La plate-forme Ceva Dragonfly-NB2 nous a permis de réduire considérablement notre time-to-market car elle a fourni la plupart des briques de base de notre SoC, des éléments clés qui avaient déjà été validés sur silicium et préintégrés, précise Kong Xiao-Hua, le CEO de Nurlink. Programmable, la solution nous a quand même permis d’ajouter notre propre valeur ajoutée et de réaliser un produit vraiment différentié. Quinze mois nous a suffi pour passer de l’accord de licence à une première communication NB-IoT réelle avec notre silicium et nous sommes déjà engagés avec plusieurs opérateurs de par le monde pour certifier notre puce-système. »

New LTE Modules Developed Specifically for CBRS Applications

Sequans has introduced two new modules optimized for the design of devices for LTE CBRS(Citizens Broadband Radio Service) networks. The CB610L and CB410L are the first two modules designed from the ground up to enable easy and massive deployment of IoT devices on private LTE CBRS networks.

They are cost-effective modules that can support a wide range of medium data rate applications – including industrial IoT and M2M devices, gateways, and broadband consumer devices – and the very small form factor LCC package enables easy mounting into small and thin devices or mini-PCI or M.2 NGFF carriers.

According to Mobile Experts – Key building blocks for the CBRS market have been solidified, which means the market is ready for a commercial rollout beyond trials. They expect a surge in small cell shipments between 2020 and 2023 – an annual shipment of about 400,000 small cells and radios will result in sales of over $900 million, and more than 550 million handsets, CPEs, and IoT devices cumulatively shipped during that time.

Sequans is a member of the CBRS Alliance, an industry organization dedicated to supporting the development, commercialization, and adoption of LTE solutions for the US 3.5 GHz Citizens Broadband Radio Service. 

Sequans CBRS  Modules Product Features:

  • Available in two versions:
    • CB610L for LTE Cat 6          
    • CB410L for LTE Cat 4          
  • All-in-one standalone module solutions      
  • Easy integration into IoT, M2M, and broadband devices      
  • 3GPP Release 10      
  • Small LCC (leadless chip carrier) package, 32 x 29 mm      
  • Supports CBRS networks in USA on LTE band 48, and MNO networks worldwide on LTE bands 42/43      
  • Includes drivers for all major host operating systems      
  • Includes a comprehensive set of interfaces      

The CB610L and CB410L modules are based on Sequans’ Cassiopeia LTE-Advanced platform, which is compliant with 3GPP Release 10 specifications. Cassiopeia supports a frequency range from 170 MHz up to 3.8 GHz and highly flexible dual-carrier aggregation that allows the combination of any two carriers of any size up to 20 MHz each, contiguous or non-contiguous, inter-band or intra-band. Cassiopeia also includes Sequans’ advanced receiver technology for improved performance. 

CB610L and CB410L are ideal for adding LTE connectivity to electronics devices for industrial Internet of Things (IoT), Machine-to-Machine (M2M) and broadband consumer applications. The LCC package allows for a cost-efficient platform and simple PCB design. The modules support a wide variety of interfaces, including USB 2.0 host and device, SDIO 3.0 host, USIM, UARTs, GPIOs, SPI and I2S/PCMTDM for audio.

From idea to finished product

Everything starts with the discovery of a need. Sometimes we ourselves see a need that nobody has seen before. At other times the signal comes from our users. Irrespective of where the thought is born, we are always eager to do a thorough job to develop the best solution.

Initially we gathers to examine the need. At this stage we visit which experience this need. A thorough evaluation of current working methods and their advantages and disadvantages is performed.

A creative but thorough work

When we have created a good understanding of the need, work starts on finding the best possible solution regarding functionality, safety and efficiency. Different ideas and thoughts are tested in the development group.

Finally, when we have come so far that we have a first prototype, extensive internal testing starts. Here the product is often changed on many points in order to even better solve our customers’ needs.

Tests under real conditions

But in order really to get a confirmation that our solution fits the needs of our users, it is time for a validation. A number of prototypes are placed at customers with whom we are in close collaboration. They get to test the product for a certain period and then revert with their points of view.

A new innovative product reaches out to the entire world

After having performed any modifications based on these tests, the product is ready for production. From the point when a need is discovered, the whole world now has the possibility to use the solution in order to perform day to day activities.

 

Espressif Announces the Release of ESP32-S2 Secure Wi-Fi MCU

Shanghai, China
May 15, 2019

 

Espressif announces the release of the ESP32-S2 Secure Wi-Fi MCU, which is a highly integrated, low-power, 2.4 GHz Wi-Fi Microcontroller SoC supporting Wi-Fi HT40 and 43 GPIOs. Based on Xtensa® single-core 32-bit LX7 processor, ESP32-S2 can be clocked at up to 240 MHz.

ESP32-S2 is a highly integrated, low-power, 2.4 GHz Wi-Fi Microcontroller SoC supporting Wi-Fi HT40 and 43 GPIOs. Based on Xtensa® single-core 32-bit LX7 processor, it can be clocked at up to 240 MHz.

With state-of-the-art power management and RF performance, IO capabilities and security features, ESP32-S2 is an ideal choice for a wide variety of IoT or connectivity-based applications, including smart home and wearables. With an integrated 240 MHz Xtensa® core, ESP32-S2 is sufficient for building the most demanding connected devices without requiring external MCUs. 

By leveraging Espressif’s mature and production-ready software development framework (ESP-IDF), ESP32-S2 achieves a balance of performance and cost, thus bringing faster and more secure IoT connectivity solutions to the market.

 

Features

CPU and Memory

  • Xtensa® single-core 32-bit LX7 microcontroller
  • 7-stage pipeline
  • Clock frequency of up to 240 MHz
  • Ultra-low-power co-processor
  • 320 kB SRAM, 128 kB ROM, 16 KB RTC memory
  • External SPIRAM (128 MB total) support 
  • Up to 1 GB of external flash support
  • Separate instruction and data cache

Connectivity

  • Wi-Fi 802.11 b/g/n
  • 1×1 transmit and receive
  • HT40 support with data rate up to 150 Mbps
  • Support for TCP/IP networking, ESP-MESH networking, TLS 1.0, 1.1 and 1.2 and other networking protocols over Wi-Fi
  • Support Time-of-Flight (TOF) measurements with normal Wi-Fi packets

IO Peripherals

  • 43 programmable GPIOs
  • 14 capacitive touch sensing IOs
  • Standard peripherals including SPI, I2C, I2S, UART, ADC/DAC and PWM
  • LCD (8-bit parallel RGB/8080/6800) interface and also support for 16/24-bit parallel
  • Camera interface supports 8 or 16-bit DVP image sensor, with clock frequency of up to 40 MHz
  • Full speed USB OTG support

Security

  • RSA-3072-based trusted application boot
  • AES256-XTS-based flash encryption to protect sensitive data at rest
  • 4096-bit eFUSE memory with 2048 bits available for application
  • Digital signature peripheral for secure storage of private keys and generation of RSA signatures

Optimal Power Consumption

ESP32-S2 supports fine resolution power control through a selection of clock frequency, duty cycle, Wi-Fi operating modes and individual power control of its internal components. 

  • When Wi-Fi is enabled, the chip automatically powers on or off the RF transceiver only when needed, thereby reducing the overall power consumption of the system. 
  • ULP co-processor with less than 5 uA idle mode and 24 uA at 1% duty-cycle current consumption. Improved Wi-Fi-connected and MCU-idle-mode power consumption.

 

Software

ESP32-S2 supports Espressif’s software development framework (ESP-IDF), which is a mature and production-ready platform, already used by millions of devices deployed in the field. Availability of common cloud connectivity agents and common product features shortens the time to market.

 

Applications

ESP32-S2 offers a universal Wi-Fi connectivity solution for a variety of applications, ranging from consumer to industrial use-cases. Furthermore, the computing power and memory expandability also makes it a suitable solution for simple ML-on-edge applications. 

While it can support a large number of use-cases, the main target application use-cases are listed below:

Smart-Home Connectivity

Ranges from simple solutions like light bulbs, smart door-locks, smart sockets to white goods and kitchen appliances, over-the-top (OTT) devices and video streaming devices like security cameras

  • Supports Mesh Network, which can be applied to large-scale commercial lighting and smart-home network solutions.
  • Allows efficient interfacing with a wide range of sensors, which is suitable for the needs of different smart-home scenarios.

Battery-operated devices

Connected Wi-Fi sensors, Wi-Fi enabled toys, wearable and healthcare devices

  • Small 7 mm ⨉ 7 mm QFN package, which is ideal for wearable devices
  • Low power consumption, in hibernation mode, of less than 5 uA enables application in battery-operated devices or long standby-time devices
  • QSPI/OPI supports multiple flash/SRAM chips for flexible configuration of NVM and volatile data storage

Industrial automation

Industrial automation includes wireless control and robotics, smart lighting, HVAC control, which can ensure high-quality technology development and a long life-cycle for products.

  • With its high RF performance and security features, it can meet strict requirements and high standards of reliability and efficiency for electronic control.

Retail & Catering Applications 

POS machines and service robots

  • Advanced security features enable the protection of sensitive data on the chip and the flash device
  • Small form factor 
  • With 14 highly sensitive touch sensors and an LCD interface, ESP32-S2 targets low-cost securely connected HMI devices, such as POS machines

 

Engineering Samples of ESP32-S2 beta will be available in June.

For more information, please contact Espressif Business Team.

Qu’est-ce que NB-IoT ?

Usages de NB-IoT

NB-IoT ou Narrowband IoT est un nouveau standard de communication Low Power Wide Area Network (LPWAN ou Réseau basse consommation longue portée) spécialement conçu pour l’Internet des objets (Internet Of Things) développé par 3GPP (Third Generation Partnership Project, l’organisation derrière la standardisation des réseaux cellulaires).

 

Graphique représentant l'évolution exponentielle du nombre d'IoT dans le monde jusqu'à 2025

 

 

 

 

 

 

 

Source: statista

 

 

Avec l’avènement de l’IoT, les problématiques liées à l’industrie 4.0 et la prédiction des experts d’avoir plus de 75 Milliards d’objets connectés à l’aide d’un réseau sans fil d’ici 2025, il est nécessaire de créer des technologies adaptées à ces nouveaux besoins. Ce standard permet aux objets connectés de communiquer de gros volumes de données sur de très grandes distances avec une latence très élevée.

Certains annoncent même que cette technologie représente le futur des standards de communication IoT et sera celui le plus utilisé d’ici 2025.

Nous allons donc vous présenter ce nouveau standard en détail afin d’appréhender les avantages pour l’IoT.

 

NB-IoT en détails

Modes opérationnels de Narrowband IoT

 

 

 

 

 

 

 

Source: Ericsson

 

 

NB-IoT ou Narrowband IoT ou encore appelé LTE-M2 est une technologie basse consommation et longue portée (LPWAN) validée en Juin 2016 qui peut fonctionner de trois manières différentes:

  • Sur la bande de fréquence 200 kHz anciennement le réseau GSM
  • Avec le réseau LTE qui réserve des ressources pour NB-IoT
  • Au sein d’un réseau indépendant

Le spectre de fréquence GSM de 200kHz est peu utilisé aujourd’hui et laisse donc potentiellement la place, pour ce type de technologie, d’apporter une nouvelle solution LPWAN.

Tout comme LoRa et Sigfox, ce standard permet à des objets basse consommation de communiquer  avec des applications externes à travers le réseau cellulaire.

Partage des bandes de fréquences LTE NB-IoT

 

 

 

 

 

 

 

Source: Couche physique de NB-IoT [EN]

 

 

Le constructeur Chinois Huawei est un fervent défenseur de cette technologie déjà disponible en Chine. Il a fortement contribué ces dernières années dans la définition technique de cette technologie.

Cas d'utilisations de Nb-IoT

Echange d’un grand volume de données

A la différence de LTE-M, il n’est pas basé sur le protocole IP mais utilise tout de même un protocole basé sur l’échange de message (message based). Il a pour avantage de proposer un taux de modulation plus rapide que LoRa ou Sigfox. Il peut donc échanger une plus grande quantité de données à un rythme moins élevé. LTE-M quant à lui, est plus adapté à des applications qui nécessitent une plus grande bande passante.

 

Une latence élevée

Techniquement NB-IoT utilise donc la bande de fréquence de 200kHz et la modulation OFDM pour les communications entrantes et SC-FDMA pour les communications sortantes. Par son design, il n’est pas prévu d’avoir des temps de réponse de l’ordre de la milliseconde.

Il permet d’avoir des débits de 20 à 250Kbit/s en download ou upload avec une latence inférieure à 10 secondes environ. La latence (latency), dépendra de la qualité de la puce de communication, du réseau, de la qualité de réception et de la distance avec l’antenne la plus proche.

 

Utilisation des réseaux mobiles existants

NB-IoT s’appuie sur les réseaux 4G existants dont un certain nombre de fonctionnalités et mécanismes sont hérités. Il est donc compatible avec une mobilité à l’international grâce à l’itinérance aussi appelé roaming. Cela signifie aussi que ces réseaux sont accessibles sous licence et sont pilotés par des opérateurs spécialisés dans le domaine. La qualité du réseau est donc gérée par des experts du métier.

NB-IoT est considéré 5G ready, c’est à dire qu’a sa sortie il pourra être compatible avec cette nouvelle norme de transmission.

Nous sommes donc face à une technologie qui est loin d’être temps réel à cause de sa grande latence. Les cas d’utilisation sont donc pour des besoins qui ne nécessitent pas ce type de contrainte.

 

Les avantages de NB-IoT

Les avantages de NB-IoT

 

 

 

 

 

 

 

source: Accent systems

 

 

Cette nouvelle technologie apporte un certain nombre d’avantages par rapport à son domaine d’utilisation.

La faible consommation

Le premier point critique dans le domaine des objets connectés est la consommation électrique. Comme vu plus haut, le nombre de devices intelligents ne fait qu’augmenter. Il est donc primordial que ces supports consomment le moins possibles pour plusieurs raisons:

  • Lutter contre la surconsommation électrique
  • Il n’est pas envisageable de recharger ou changer des batteries d’un tel nombre d’IoT
  • Pourquoi consommer de l’énergie alors que ce n’est pas nécessaire ?

Cette technologie est dites LPWAN donc répond aux standards de consommation minimale.

 

La fiabilité

La communication de ces objets via NB-IoT n’est certes pas temps réel mais se doit d’être fiable dans le temps. En s’appuyant sur des réseaux existants et sous licence, les opérateurs sont déjà en charge de la qualité de service de ceux-ci. Ils pourront ainsi garantir une QoS (Quality Of Service) suffisante pour ce type de fonctionnement.

 

Diminution des coûts

La simplicité du standard sur lequel repose cette technologie permet de créer des puces de communication peu onéreuses. En effet, une puce qui supporte uniquement NB-IoT est beaucoup moins chère à produire qu’un module qui implémente LTE-M par exemple. De plus, le fait d’être orienté très faible consommation, c’est encore une économie substantielle.

Contrairement à certains autres technologies, il n’y a aucunement besoin d’une passerelle (gateway) pour que cela fonctionne.

 

Une couverture plus adaptée

Reposant sur le réseau actuel de la 4G ce mode de communication est aussi bien adapté pour une utilisation en intérieur (Indoor) ou en extérieur. Ainsi la seule problématique, quand il sera implémenté, sera de vérifier la couverture des localisations de vos devices IoT.

 

Cas d’utilisations

Ce standard a été pensé pour de nombreuses applications et cas d’utilisation pour le domaine de l’IoT et l’IIoT (Industrial Internet Of Things). On retrouve entre autre:

  • Les objets pour la mesure intelligente comme pour l’électricité, le gaz ou l’eau (compteur d’eau) par exemple
  • Les systèmes de surveillances comme les alarmes ou les alarmes incendies
  • Les villes connectées ou smart city qui permet de piloter par exemple les lampes, le mobilier urbain ou encore le suivi du remplissage des poubelles
  • La mesure des données de santé personnelles à l’aide d’objets connectés
  • Le domaine médical trouvera un avantage certain pour la surveillance des constantes de santé à distance comme le montre le document disponible ici.
  • L’état de certaines machines industrielles qui ne nécessitent pas un fonctionnement temps réel

Il existe de nombreux cas d’utilisations auquel répond NB-IoT. Les cas présentés ci-dessus se veulent réels et sont des problématiques ou des sujets de réflexion actuels. Mais de manière générale tout objet connecté qui aurait besoin de communiquer sur de longues distances et qui ne nécessitent pas des temps de réaction trop rapides pourraient être concernés.

Advantech commence dores et déjà à créer des solutions d’acquisition de données ou de communication industrielle qui implémentent NB-IoT. Vous pouvez les retrouver sur cette page.

 

Etat du déploiement de NB-IoT

Carte de la couverture mondiale de NB-IoT 
Source: gsma.com Mobile IoT Deployments

NB-IoT ne peut fonctionner « out of the box » sur le réseau actuel 4G sans l’implémentation du standard par les opérateurs en charge de la couverture mobile du territoire qui vous concerne.

Aujourd’hui la France n’a toujours officiellement lancé aucun réseau qui implémente cette nouvelle technologie. Donc NB-IoT n’est, pour le moment, officiellement pas disponible en France. Cependant l’opérateur SFR travaillerait sur ces sujets en partenariat avec des industriels du secteur. Orange, quant à lui, a lancé des zones de tests pour LTE-M mais aucun travaux sur NB-IoT semble en cours (Alors qu’ils ont déployés NB-IoT en Belgique)

Pour rappel la France a vu naître deux technologies concurrentes à savoir Sigfox et LoRa ce qui explique l’état de déploiement actuel de NB-IoT.