Sélectionner une page
IoT use in healthcare grows but has some pitfalls

IoT use in healthcare grows but has some pitfalls


The future looks bright for the use of IoT in Healthcare. The global portable and remote patient monitoring market alone is expected to reach $43 billion by 2027. The Covid-19 pandemic has accelerated this scenario. According to IDC, by the end of this year, seven of the top ten wrist wearables companies will have launched algorithms capable of early detection of potential signs of infectious diseases.

Although the healthcare sector has taken longer to adopt Internet of Things technologies than other industries, the Internet of Medical Things (IoMT) is now at the heart of the digital healthcare ecosystem. This ecosystem includes patients and medical teams, medical devices (e.g., diagnostic and imaging), surgical robots, wearables, smart devices, and countless wireless sensors, all of which share confidential patient data.

When ordinary portable medical devices are connected to the Internet, they can collect essential data that can save lives. They also serve to provide extra insight into the symptoms and trends of any specific physiological or even psychological disorder.

Similarly, wearable devices are reshaping the way patients receive medical care. They help collect and transfer essential information to doctors, such as heart rate, oxygen level, blood pressure, weight, ECGs, and blood sugar levels.

From an industry perspective, all this data can help hospitals, pharmaceuticals, and life science companies make better decisions and gain a competitive advantage.

By 2023, 65% of patients will access care through a digital connection. By 2024, data proliferation will result in 60% of healthcare organizations’ IT infrastructure is built on a data platform that will use AI to improve process automation and decision-making. When coupled with AI (Artificial Intelligence) and ML (Machine Learning), IoT can help find potential cures and treatments for diseases.

But the use of IoT in healthcare has its pitfalls – in general, IoT devices cannot be centrally managed, patched, updated, or secured. They are simple and functional, making them vulnerable to exploitation by cybercriminals, as most of them were not designed with security in mind. The possibility that a zero-day exploit on a medical device could be used to harm or even kill someone undetected is real.

Therefore, data intrusion and loss and the potential to take control of a device should be top of mind for healthcare IT teams. Each type of connected medical device has its own set of complexities that need to be protected at the time of product design. Each device has an application programming interface (API), a user interface, a URL, and often interfaces for HDMI, Bluetooth, or WiFi, all of which can be exploited if not properly secured by the device manufacturer and users.

Concerned about this, the US Food and Drug Administration (FDA) released guidance in 2019 to assist the industry by identifying cybersecurity-related issues that IoMT device manufacturers should consider in designing and developing their products. The Content of Premarket Submissions for Management of Cybersecurity in Medical Devices – Guidance for Industry and Food and Drug Administration is aligned with NIST’s Cybersecurity Framework and recommends that medical device manufacturers consider detecting, identifying, recording, and recording, if possible, quickly correcting security compromises. In line with these essential functions, FDA suggests security measures that device manufacturers should consider for the protection of medical devices, which include:

  • Ensure secure transfer of data to and from the device, using encryption where appropriate;
  • Provide information to end-users on the appropriate actions to take upon detection of a cyber security event;
  • Leverage hazard analysis, mitigation, and design considerations relating to cybersecurity risks associated with the device;
  • Have a plan for validated software updates and patches as needed throughout the device lifecycle to continue to ensure its security and efficiency.

As cybersecurity risks for medical devices are constantly evolving, the FDA cannot fully mitigate the risks. Which makes effective cybersecurity risk management, protection, and monitoring of IoT devices, legacy operating systems, and health records for healthcare organizations a paramount concern. And this should be a shared responsibility among stakeholders, including medical device manufacturers and hospitals.

Everyone should invest time and resources to:

  • The constant monitoring of cybersecurity information sources for identification and detection of cybersecurity vulnerabilities and risks;
  • The implementation of robust software lifecycle processes that include mechanisms to monitor third-party software components for new vulnerabilities throughout the total product lifecycle;
  • The design verification and validation of software updates and patches used to mediate vulnerabilities, including those related to off-the-shelf software;
  • The understanding, assessment, and detection of the presence and impact of a vulnerability;
  • The establishment and communication of processes to capture and address vulnerabilities;
  • The use of threat modeling to clearly define how to maintain the security and core performance of a device by developing mitigations that protect, respond and recover from cybersecurity risk;
  • The adoption of a coordinated vulnerability disclosure policy and practice;
  • The implementation of mitigations that address cybersecurity risk at the outset and prior to its exploitation.

Network monitoring solutions with capabilities to integrate medical devices offer healthcare providers the ability to monitor vital data connections, servers, and the applications involving those devices. Not least because all medical devices require a classic IT infrastructure for communication. This infrastructure takes care of data transfer and provides the hardware for the system network. It requires cables, switches, servers, and storage systems, as well as WIFI and access points. But the hospital IT infrastructure imposes an additional challenge on IT professionals: it also takes care of the specialized healthcare systems, as often all elements and systems of a hospital, for example, coexist in the same infrastructure.

For example, Musgrove Park Hospital in the UK uses Paessler’s PRTG Network Monitor to oversee its network, following NHS Digital cybersecurity recommendations. PRTG monitors the internal and external network and is configured on 10,950 Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven International (HL7) sensors.

These sensors empower IT professionals and healthcare administrators to monitor a variety of critical systems and functions, including:

  • Hospital Information Systems (HIS, HIS): PRTG makes it possible to view what is happening across the integrated HIS, not only the relationship with data exchange but also the computing resources and devices involved. Notably, PRTG can be deployed on-premises or in the cloud and has specially designed sensors for many of the industry’s most widely used IT solutions, including those from Amazon Web Services, Cisco, Fujitsu, Microsoft, NetApp, VMware, and others. With PRTG, it has never been easier for hospital IT departments to fully monitor their medical, financial, and administrative systems.
  • Laboratory Information Management Systems (LIMS): PRTG also facilitates oversight of all systems and devices integrated into laboratory processes, as well as the data transported between them, including information regarding sample management, testing, analysis, disposal, and compliance. Monitoring also ensures that clinicians and clinical teams have quick access to the findings they need.
  • Radiology Information Systems (RIS): All radiology and imaging department systems, hardware and software, and associated workflows can be monitored through PRTG’s intuitive dashboard – empowering IT to easily determine the cause of any delays in image delivery between devices, departments, or clinicians.
  • Picture Archiving and Communication System (PACS): PRTG also monitors the entire PACS, making it possible to ensure that all systems required for secure image movement, storage, and archiving are functioning as expected. This includes the workstations used to view and interpret scans.

Source: Paessler

Therefore, IoT in healthcare presents several security and confidentiality components that must be taken seriously and planned for in advance. The key to success is visibility. With so many potential points of failure, teams involved with the Internet of Medical Things (IoMT) need to be aware of any potential failures at all times and often be able to resolve issues before they occur.

    EUROGLAS utilise le système “Track & Trace” de HeronTrack pour la surveillance de leurs chevalets.

    Le producteur de verre Euroglas-De Landtsheer a fait équiper 700 chevalets de vitrage au moyen des sensors de HeronTrack.  Ainsi, cette société a toujours un aperçu exact de son stock et peut économiser des frais de remplacement inutiles.  Dans cet article, vous découvrirez comment le système fonctionne et quels sont les avantages qui en découlent.

    Frederik De Knijf, CEO d’Euroglas-De Landtsheer nous raconte : “Un chevalet coûte entre 500,- et 750,- EUR.  Chaque année, nous devons investir pas moins de 50.000,- EUR dans le remplacement de plusieurs chevalets de vitrage, qu’ils soient abîmés, perdus, égarés ou tout simplement prêtés.  Nous souhaitons limiter, au strict minimum, ces frais importants et nous pensons que la solution la plus efficace réside dans une meilleure gestion de notre stock, nous permettant de retrouver rapidement les chevalets égarés”.

    Pose de sensors Track & Trace sur 700 chevalets de vitrage.

    C’est ainsi que la société Euroglas-De Landtsheer décida d’utiliser les sensors ‘Track & Trace’ de HeronTrack.  Ces sensors furent donc installés sur pas moins de 700 chevalets, permettant ainsi au département logistique de visualiser l’endroit exact où se trouve leur matériel, que celui-ci soit en Belgique ou même à l’étranger.

    La plus-value des sensors de HeronTrack s’est rapidement fait ressentir.  Grâce à ce nouveau système, Euroglas-De Landtsheer retrouve sans perdre de temps tous ses chevalets alors que certains étaient égarés chez des fournisseurs ou clients.

    Les sensors de HeronTrack se distinguent par leur facilité d’utilisation, leur petit format, une durée de batterie allant de 5 à 7 ans et naturellement leur excellent rapport prix/qualité.

    Comment fonctionne le système Track & Trace ?

    HeronTrack travaille sur base de deux éléments : un sensor qui est tout simplement fixé sur le chevalet (ou l’outil) et la plate-forme Software qui peut être consultée via l’application mobile ou online.  Grâce à l’application mobile, les chauffeurs de Euroglas-De Landtsheer retrouvent aisément tous les chevalets dans les environs.  Chaque mouvement est automatiquement communiqué. Simultanément, le sensor transmet 2x par jour sa position GPS vers la plate-forme.  Via cette plate-forme online, les responsables du département logistique peuvent retrouver tous les chevalets sous forme d’un rapport ou d’un rendu visuel.  A partir du moment où vous activez le modus antivol du sensor, ce dernier envoie toutes les 10 minutes un ‘update’ de sa position actuelle.  Ainsi, vous pouvez retrouver rapidement le matériel volé ou égaré.

    Envie d’en savoir plus sur le fonctionnement de notre système ‘track & trace’ ?

    Une couverture précise et une localisation étendue sur plus de 50 pays.

    Les sensors de HeronTrack communiquent via Sigfox avec le réseau public de engieM2M afin de détecter la position des chevalets.  Pas uniquement dans le Benelux mais aussi dans toute l’Europe, même à des endroits où le réseau est faible.  En outre, le réseau Sigfox RC1 garantit une couverture internationale dans plus de cinquante pays, jusqu’en Afrique et au Moyen-Orient.

    Ensuite, la technologie BLE veille à une connexion continue vers les smartphones des chauffeurs et des collaborateurs sur chantier.  Cette connexion fonctionne même à l’intérieur, de telle manière que la couverture et la position donnée sont complètes et très précises.

    Une passerelle BLE a été installée au siège social de Euroglas-De Landtsheer et positionne sur une carte tous les chevalets présents sur le site.  Quand un chevalet quitte la société ou revient dans le magasin, ce déplacement est signalé automatiquement.

    Economie de temps et d’argent.

    Le système Track & Trace de HeronTrack simplifie considérablement la gestion du stock.  “Nos managers du département Logistiques ont un aperçu complet et précis de la localisation de tous nos chevalets”, confirme Monsieur De Knijf.  “Avec cette application, nous avons toujours une vue exacte sur notre stock et une gestion manuelle n’est donc plus nécessaire.  Grâce à l’automatisation des entrées et sorties de magasin, nous économisons au minimum une ½ heure par jour soit environ un gain de 10 heures par mois.  De plus, il n’est plus nécessaire d’acheter de nouveaux chevalets en remplacement de ceux qui sont manquants.  C’est ainsi que nous diminuons sensiblement nos frais de roulement.”

    Voulez-vous tester gratuitement la solution « Track & Trace » HeronTrack ?

    GPS: Too power-hungry for small asset tracking solutions? Not necessarily.


    Extend the battery life of size-and power-constrained GPS asset trackers for supply chain and logistics monitoring with cloud-based positioning.

    Under the hood, the GPS-enabled asset trackers are quite simple, made up of just a few components. Inside, they feature GPS receiver, used to locate the asset using radio signals transmitted by orbiting global navigation satellite system (GNSS) satellites. They also include a wireless modem – often for 2G, 3G, or 4G LTE cellular communication – used to channel data to and from the cloud. Each of these is connected to a dedicated antenna that receives and transmits the required wireless signals.

    And finally, they contain one more component that is responsible for the lion’s share of the device’s size and weight: the battery. There’s a reason why the battery is so large: compared with the energy used for occasional data transfers the asset trackers carry out, for example over low power wide area cellular networks (LTE-M or NB-IoT), satellite-based positioning can be – dare we say it? – well, a bit of a power hog.

    A standard GNSS receiver that continuously tracks its location can drain even a generously proportioned battery pack in just a few days. Using a series of hardware and firmware-based tweaks to optimize the balance between tracking performance and power consumption, the battery longevity can be extended considerably.

    For typical use cases in size-constrained applications, including sports watches, pet and people trackers, and handheld devices that can be recharged on a daily or weekly basis, these tweaks provide sufficient longevity to make the solutions attractive to customers.

    But other use cases, particularly small industrial asset trackers, simply need more juice. In industrial asset tracking applications, managing a large fleet of GPS-enabled asset tags to keep tabs on parcels, boxes, roll cages, livestock, and across vast supply chains may only become viable if maintenance efforts, largely focused on keeping the trackers powered up, are kept to a minimum.

    Cloud-based positioning delivers maximum power autonomy

    We’ve already written about hardware- and firmware-based approaches to reduce a GNSS receiver’s power consumption on this blog. We’ve also put together a white paper presenting strategies for designing ultra-low-power GPS solutions for the IoT. In this blog, we focus on one of the strategies we briefly touched on in the white paper. It’s the approach that goes furthest in extending the mileage you can get out of GPS-enabled IoT asset tracking solutions, namely cloud-based positioning.

    First, what is cloud-based positioning? In “typical” satellite-based positioning, each step in the positioning process happens in the GNSS receiver itself – satellite signal acquisition and data download, the pseudorange calculation (yielding the estimated distance to the orbiting satellites based on the available data) to each satellite, and the final position fix. Cloud-based positioning splits up the task into two steps, resulting in exponential improvements in power consumption.

    With our u‑blox cloud-based positioning solution, step one, which includes everything up to (and including) the pseudorange calculation, still takes place on the GNSS receiver. Step two, the position calculation, takes place in the cloud, based on the pseudoranges, which are transferred to the cloud at the end of step one using any available form of wireless communication (including 4G LTE, Wi-Fi, Bluetooth, or even proprietary technologies) is relegated to the cloud.

    u‑blox CloudLocate for supply chain monitoring applications

    Using CloudLocate, which is what we call our implementation of cloud-based positioning, the GNSS receiver only needs to be switched on for three seconds in good signal conditions to achieve a positioning accuracy of under 10 meters, which is more than enough for most common industrial asset tracking applications. The position is calculated in the cloud and not on the device itself. As a result, the device never finds out its own position. Fortunately, this is perfectly aligned with the way asset tracking platforms are designed.

    Without having to retrieve GNSS aiding data, CloudLocate resolves the position of tracked assets in the cloud using a 12-50 byte data upload. The small size of the data package, achieved by preprocessing the GNSS signals on the GNSS receiver, makes the solution well-adapted for bandwidth-constrained protocols and networks and keeps associated data transfer costs low. Best of all, by reducing the power demand of the GNSS receiver up to 90 percent (for six position updates per day), CloudLocate can increase the battery life of a tracking solution fourfold (or much more if fewer daily position updates are required).

    CloudLocate offers a new degree of flexibility, expanding the scope of industrial asset tracking solutions. Because of the way we implemented the service, CloudLocate can aggregate data from other positioning technologies in addition to satellite-based positioning. Cellular network fingerprinting (which we have implemented as CellLocate), Wi-Fi sniffing, or Bluetooth indoor positioning, all offer location information when the tracker is beyond the reach of GNSS signals.

    Especially in complex supply chain monitoring applications that involve assets transported using a variety of modes of transportation with multiple stops in cargo terminals, logistics centers, or warehouses, this technological diversity can help overcome potentially nerve-racking gaps in service coverage.


    Learn more about CloudLocate, our cloud-based positioning service

    To find out if CloudLocate is the right service for your application, head over to our on-demand webinar, in which we show how positioning in the cloud can help you strike the optimal balance between battery life, position accuracy, and update rate. The webinar also covers the basics behind the technology and explores some use cases that stand to benefit from it. And to go deeper, reach out to our sales team or fill out a project information form and let us know what you are working on. We’ll get back to you as quickly as possible.

    Until then, stay tuned for the next blog in our series, which will focus on tracking assets at rest, both indoors and outdoors.

    Diego Grassi

    Senior Manager Application Marketing, Industrial Market Development, u‑blox

    Courtesy of u-blox

    IoT Applications in Construction

    The construction industry is bringing real-time information into processes that are centuries old. Internet of Things (IoT) devices and sensors are collecting job site data in a more affordable, efficient and effective way than previously imaginable.

    The construction job site is now ripe for fundamental changes that enable productivity, safety, process improvement and new tools. The Internet of Things (IoT) is allowing for the deployment of simple low power sensors that are able to communicate cost-effectively. As IoT continues to become more ubiquitous, it’s having a greater impact on how the construction industry is turning around. IoT makes it possible for every stakeholder to understand what’s happening at every stage of the construction process in real-time from planning to actual construction, post-construction and how the building is operated during service.

    While the construction industry is changing at a glacial pace, construction companies who are adopting technology to successfully address common workplace concerns and streamline processes are benefitting from increased efficiencies and improved responsiveness to the increasing demands of the industry. Flat productivity, decreased margins, more schedule overruns and increased competition are some of the obvious reasons construction companies should consider the adoption of IoT technology and digitization. Data has now become a critical asset for business, and informed decisions can only be data-driven.

    Generally, productivity, maintenance, security and safety appear to be the leading drivers of IoT adoption in the construction industry.


    The construction sector is conditioned by deadlines and targets. It’s mandatory to avoid backlogs because they result in budget increases. IoT can enable more readiness and efficiency thus improving productivity. IoT leaves people with less menial work, and, instead, they’re allocated more time to interact with project owners and amongst themselves, generating new ideas to improve project delivery and customer satisfaction.
    Construction requires an adequate supply of materials to ensure the smoothness of the project. However, the late supply of materials often occurs at the site due to poor scheduling caused by human error. Through IoT, the supply unit is fitted with a suitable sensor it’s possible to automatically determine the quantity and make automatic orders or raise alarms.


    Power and fuel consumption will result in wastage if not actively managed, and that will impact the overall cost of the project. Through the availability of real-time information, it becomes possible to know the status of every asset, to schedule maintenance stops or refueling and turn-off idle equipment. Further, field sensors help to prevent problems from happening, which reduces warranty claims, helping the bottom line and keeping customers happy. Beyond notifications for decreasing stocks, sensors can be used to monitor materials condition like the suitability of the temperature or humidity of the item/environment, handling issues, damage and expiration. Equipment suppliers have had to evolve from just being suppliers to partners who continuously monitor and maintain equipment, leaving clients to focus on their core business.

    Safety and Security

    Some of the biggest challenges encountered on a construction job site are theft and safety. Human security agents are not adequate to monitor a huge site properly. Using IoT enabled tags, any material or theft of items is easily resolved as these sensors will notify the current location of the materials or item. It’s no longer necessary to send a human agent out to check out everything.

    IoT allows for the creation of a digital real-time job site map together with the updated risks associated with the works and notifies every worker when getting closer to any risk or entering a dangerous environment. For example, monitoring the air quality in an enclosed space is critical for workplace safety. IoT technologies will not only prevent staff from being exposed to dangerous conditions but can also detect those conditions before or as they happen. With real-time IoT data, workers are empowered to be more predictive about job-site issues and prevent situations that could lead to a safety incident and lost time.

    Handling equipment and machinery for too long may also cause workers to experience fatigue, which in turn disturbs their concentration and productivity. IoT makes it possible to monitor signs of distress like abnormal pulse rates, elevations and user location.

    Multi-Technology: The Future of Geolocation

    Successful IoT geolocation requires multi-technology solutions that leverage cellular, Bluetooth, LP-GPS, WiFi, and more while focusing on next-gen LPWAN.

    In the big world of IoT, location tracking is the next frontier! Location tracking for humans is already an integral part of our lives, especially for navigation. Traditional technologies enabling this are not only expensive; they also have technical boundaries that prevent successful scaling. For IoT geolocation to become a reality, it must be extremely accurate, very low cost, and significantly low touch.

    Where Is the Market?

    Research and Markets predict revenues from “Geo IoT” will reach $49 billion by 2021.

    Research and Markets report in “Geo IoT Technologies, Services, and Applications Market Outlook” that just as location determination has become an essential element of personal communications, so shall presence detection and location-aware technologies be key to the long-term success of IoT. They add that Geo IoT will positively impact many industry verticals.

    Connecting IoT objects is already a large market growing exponentially with the mix of unlicensed Low-Power Wide Area Network (LPWAN) technologies such as LoRaWAN, and combined more recent introduction of Cellular IoT technologies such as NB-IoT and LTE-M. Adding Geolocation to this introduces a whole range of new applications not possible before. Some of these applications are:

    1. Asset management
    2. Fleet management
    3. Anti-theft scooter/bike rental
    4. Logistics/parcel bags tracking
    5. Worker safety for oil and gas
    6. Elderly and disabled care
    7. Tracking solution for skiers
    8. Pets and animal tracking

    The above applications represent a large existing market that can only be captured with extremely low cost and low power trackers. 

    The Challenges of Asset Tracking

    Whether it’s railway cars, truck trailers, or containers, tracking valuable assets on the move is a pain point for many large, distributed organizations involved in logistics and supply chain management. These large organizations typically rely on partners such as distributors to register check-in and check-out events correctly.

    The registration process at specific checkpoints is usually manual, intermittent, and subject to human error.  To address this issue, an IoT low-power asset tracking system that leverages Low Power Wide Area Network (LPWAN) trackers brings a “timeless” checkpoint solution. Specifically, LoRaWAN™-based trackers, due to their low power, low cost and lightweight, standardized infrastructure, provide the first truly reliable tracking solution that allows logistics operators to reduce downtime during transportation. 

    In the logistics sector, many business use cases suffer additional costs due to inefficient utilization of assets. Transport companies need to invest in freight railway cars; car logistics companies need to invest in truck trailers; and, of course, there are the standard containers and pallets.

    The profitability of #AssetTracking business use cases directly depends on the minimization of asset downtime: every day or hour lost in a warehouse, lot, or rail station reduces the given asset’s #profit potential. || #IoT @ActilityCLICK TO TWEET

    However, measuring this downtime is also a challenge. Traditional solutions involved cellular or satellite trackers, which require significant CAPEX, but perhaps more importantly also ongoing OPEX due to battery replacements and connectivity costs. In some cases, trackers are located in hard-to-reach areas especially when mounted on railroad cars, or in oil and gas rigs, which make it very costly to replace batteries—especially if there are hundreds of thousands of trackers deployed in the field.

    For now, at least, humans do battery replacement. It’s one of the dominating OPEX factors in the Total Cost of Ownership ( TCO) of the whole IoT solution. These replacement costs actually made it difficult to justify the mass adoption of conventional geolocation solutions in the logistics sector.

    LPWAN Trackers: a Game Changer

    LoRaWAN is the LPWAN connectivity standard developed by LoRa Alliance—primarily for unlicensed ISM spectrum—to disrupt both existing technology and business models.

    On the technology front, LoRaWAN’s main impact pertains to a drastic reduction in power consumption. Reducing battery usage ultimately affects OPEX-related to ongoing maintenance. It also creates new opportunities for more dynamic tracking, as communication events are less costly.

    On the business model side, logistics companies can now trade off between CAPEX and OPEX: most LPWAN systems operate within an unlicensed band. For example, the leading LoRaWAN™ technology operates in the 915MHz band in the US, the 868MHz band in Europe, and equivalent ISM bands in other parts of the world. This means that logistics companies can invest in their own wireless networks to reduce or eliminate variable connectivity costs.

    The cost of LPWAN network gateways has decreased due to higher production volumes. They’re now affordable even for very small logistic centers, such as a car distributor.

    Next Generation LPWAN trackers

    The potential of LPWAN-enabled tracking requires a new generation of hardware. The lower radio frequency and lower power consumption are only parts of a massive effort to decrease the power consumption of entire IoT systems. In order to achieve the latter, we would need to develop a “multi-technology geolocation tracker platform” that can combine GPS, Low-Power GPS, WiFi Sniffing, WiFi fingerprinting, and Bluetooth. The goal is to reduce overall power consumption while providing location information opportunistically in a variety of scenarios (e.g. indoor/outdoor, urban/rural, slow/fast moving, and so on).

    Another key factor of such a multi-technology solution is the usage of LPWAN technologies such as LoRaWAN, NB-IoT, and LTE-M for backhauling geolocation data to the cloud. This is the key. Traditional cellular technologies, such as 2G/3G/4G, are just too power hungry to meet the target goal of 5-10 year battery lifetime. However, there will be licensed Cellular IoT options based on NB-IoT/LTE-M that will also be used for some of the applications.

    Actility argues, “Merging an IoT network solution like LoRaWAN with multi-mode geolocation technologies for outdoor and indoor positioning would increase battery lifetime at least ten times more than the standard cellular solution using GSM/AGPS.”

    As demonstrated below, LoRaWAN and LP-GPS (AGPS/GPS) significantly increases battery lifetime.

    Image Credit: Actility

    A Multi-Technology Future for Geolocation

    The future of IoT geolocation will require a commitment to robust multi-technology development. We’ll need multi-technology cloud platforms that will intelligently combine Over-The-Top (OTT) geolocation technologies—such as GPS, Low-Power GPS, WiFi, and Bluetooth—with network-based TDoA geolocation technologies using LoRaWAN and/or cellular. Such innovations require close cooperation between public network operators and geolocation service providers. 

    La puce-système NB-IoT avec géopositionnement par satellite du chinois Nurlink est opérationnelle

    Dévoilée en avant-première fin février à l’occasion du Mobile World Congress, la puce-système SoC NK6010 compatible NB-IoT de la start-up chinoise Nurlink, créée en 2017, est désormais opérationnelle. Une première communication « réelle », sur la région de Nankin en l’occurrence, a pu être mise en œuvre entre la puce et la plate-forme IoT dans le nuage de China Telecom via le réseau NB-IoT de l’opérateur.

    Selon la firme américaine Ceva qui a cédé sous licence à Nurlink sa plate-forme Ceva-Dragonfly NB2, c’est une étape majeure vers la production en volume du SoC de la jeune société chinoise.

    Pour rappel, la plate-forme Ceva-Dragonfly NB2, annoncée il y a tout juste un an, est une solution modulaire et intégrée compatible avec la spécification 3GPP Release 14 eNB-IoT (enhanced NB-IoT) dite Cat-NB2 (en référence à la spécification 3GPP Release 13 NB-IoT dite Cat-NB1). Elle s’articule autour du processeur Ceva-X1 bâti sur une architecture DSP+CPU à cœur unique et doté d’instructions ad hoc, et fournit un environnement unifié pour l’exécution à la fois de la couche physique et de la pile de protocoles eNB-IoT (également incluses dans la solution).

    Pour les utilisateurs qui développent des produits NB-IoT qui exigent aussi des fonctions de géolocalisation par satellite, la solution Ceva-Dragonfly NB2 dispose en option d’un package matériel GNSS (Global Navigation Satellite System) avec récepteur RF et frontal numérique multiconstellation.

    A ce titre, la puce-système NK6010, qui cible des marchés comme les compteurs communicants, les dispositifs électroniques portés sur soi, les traceurs d’actifs et les capteurs industriels, intègre un frontal RF, un émetteur/récepteur RF, un sous-système radio cellulaire en bande de base, une unité de gestion de la consommation et un processeur d’application. Selon son concepteur, elle est apte à communiquer dans toutes les bandes de fréquence NB-IoT exploitées par les opérateurs mobiles les plus importants. Le SoC embarque également un sous-système de positionnement par satellite multiconstellation (GPS, Beidou, Galileo et Glonass) à ultrabasse consommation.

    « La plate-forme Ceva Dragonfly-NB2 nous a permis de réduire considérablement notre time-to-market car elle a fourni la plupart des briques de base de notre SoC, des éléments clés qui avaient déjà été validés sur silicium et préintégrés, précise Kong Xiao-Hua, le CEO de Nurlink. Programmable, la solution nous a quand même permis d’ajouter notre propre valeur ajoutée et de réaliser un produit vraiment différentié. Quinze mois nous a suffi pour passer de l’accord de licence à une première communication NB-IoT réelle avec notre silicium et nous sommes déjà engagés avec plusieurs opérateurs de par le monde pour certifier notre puce-système. »

    New LTE Modules Developed Specifically for CBRS Applications

    Sequans has introduced two new modules optimized for the design of devices for LTE CBRS(Citizens Broadband Radio Service) networks. The CB610L and CB410L are the first two modules designed from the ground up to enable easy and massive deployment of IoT devices on private LTE CBRS networks.

    They are cost-effective modules that can support a wide range of medium data rate applications – including industrial IoT and M2M devices, gateways, and broadband consumer devices – and the very small form factor LCC package enables easy mounting into small and thin devices or mini-PCI or M.2 NGFF carriers.

    According to Mobile Experts – Key building blocks for the CBRS market have been solidified, which means the market is ready for a commercial rollout beyond trials. They expect a surge in small cell shipments between 2020 and 2023 – an annual shipment of about 400,000 small cells and radios will result in sales of over $900 million, and more than 550 million handsets, CPEs, and IoT devices cumulatively shipped during that time.

    Sequans is a member of the CBRS Alliance, an industry organization dedicated to supporting the development, commercialization, and adoption of LTE solutions for the US 3.5 GHz Citizens Broadband Radio Service. 

    Sequans CBRS  Modules Product Features:

    • Available in two versions:
      • CB610L for LTE Cat 6          
      • CB410L for LTE Cat 4          
    • All-in-one standalone module solutions      
    • Easy integration into IoT, M2M, and broadband devices      
    • 3GPP Release 10      
    • Small LCC (leadless chip carrier) package, 32 x 29 mm      
    • Supports CBRS networks in USA on LTE band 48, and MNO networks worldwide on LTE bands 42/43      
    • Includes drivers for all major host operating systems      
    • Includes a comprehensive set of interfaces      

    The CB610L and CB410L modules are based on Sequans’ Cassiopeia LTE-Advanced platform, which is compliant with 3GPP Release 10 specifications. Cassiopeia supports a frequency range from 170 MHz up to 3.8 GHz and highly flexible dual-carrier aggregation that allows the combination of any two carriers of any size up to 20 MHz each, contiguous or non-contiguous, inter-band or intra-band. Cassiopeia also includes Sequans’ advanced receiver technology for improved performance. 

    CB610L and CB410L are ideal for adding LTE connectivity to electronics devices for industrial Internet of Things (IoT), Machine-to-Machine (M2M) and broadband consumer applications. The LCC package allows for a cost-efficient platform and simple PCB design. The modules support a wide variety of interfaces, including USB 2.0 host and device, SDIO 3.0 host, USIM, UARTs, GPIOs, SPI and I2S/PCMTDM for audio.

    From idea to finished product

    Everything starts with the discovery of a need. Sometimes we ourselves see a need that nobody has seen before. At other times the signal comes from our users. Irrespective of where the thought is born, we are always eager to do a thorough job to develop the best solution.

    Initially we gathers to examine the need. At this stage we visit which experience this need. A thorough evaluation of current working methods and their advantages and disadvantages is performed.

    A creative but thorough work

    When we have created a good understanding of the need, work starts on finding the best possible solution regarding functionality, safety and efficiency. Different ideas and thoughts are tested in the development group.

    Finally, when we have come so far that we have a first prototype, extensive internal testing starts. Here the product is often changed on many points in order to even better solve our customers’ needs.

    Tests under real conditions

    But in order really to get a confirmation that our solution fits the needs of our users, it is time for a validation. A number of prototypes are placed at customers with whom we are in close collaboration. They get to test the product for a certain period and then revert with their points of view.

    A new innovative product reaches out to the entire world

    After having performed any modifications based on these tests, the product is ready for production. From the point when a need is discovered, the whole world now has the possibility to use the solution in order to perform day to day activities.


    Espressif Announces the Release of ESP32-S2 Secure Wi-Fi MCU

    Shanghai, China
    May 15, 2019


    Espressif announces the release of the ESP32-S2 Secure Wi-Fi MCU, which is a highly integrated, low-power, 2.4 GHz Wi-Fi Microcontroller SoC supporting Wi-Fi HT40 and 43 GPIOs. Based on Xtensa® single-core 32-bit LX7 processor, ESP32-S2 can be clocked at up to 240 MHz.

    ESP32-S2 is a highly integrated, low-power, 2.4 GHz Wi-Fi Microcontroller SoC supporting Wi-Fi HT40 and 43 GPIOs. Based on Xtensa® single-core 32-bit LX7 processor, it can be clocked at up to 240 MHz.

    With state-of-the-art power management and RF performance, IO capabilities and security features, ESP32-S2 is an ideal choice for a wide variety of IoT or connectivity-based applications, including smart home and wearables. With an integrated 240 MHz Xtensa® core, ESP32-S2 is sufficient for building the most demanding connected devices without requiring external MCUs. 

    By leveraging Espressif’s mature and production-ready software development framework (ESP-IDF), ESP32-S2 achieves a balance of performance and cost, thus bringing faster and more secure IoT connectivity solutions to the market.



    CPU and Memory

    • Xtensa® single-core 32-bit LX7 microcontroller
    • 7-stage pipeline
    • Clock frequency of up to 240 MHz
    • Ultra-low-power co-processor
    • 320 kB SRAM, 128 kB ROM, 16 KB RTC memory
    • External SPIRAM (128 MB total) support 
    • Up to 1 GB of external flash support
    • Separate instruction and data cache


    • Wi-Fi 802.11 b/g/n
    • 1×1 transmit and receive
    • HT40 support with data rate up to 150 Mbps
    • Support for TCP/IP networking, ESP-MESH networking, TLS 1.0, 1.1 and 1.2 and other networking protocols over Wi-Fi
    • Support Time-of-Flight (TOF) measurements with normal Wi-Fi packets

    IO Peripherals

    • 43 programmable GPIOs
    • 14 capacitive touch sensing IOs
    • Standard peripherals including SPI, I2C, I2S, UART, ADC/DAC and PWM
    • LCD (8-bit parallel RGB/8080/6800) interface and also support for 16/24-bit parallel
    • Camera interface supports 8 or 16-bit DVP image sensor, with clock frequency of up to 40 MHz
    • Full speed USB OTG support


    • RSA-3072-based trusted application boot
    • AES256-XTS-based flash encryption to protect sensitive data at rest
    • 4096-bit eFUSE memory with 2048 bits available for application
    • Digital signature peripheral for secure storage of private keys and generation of RSA signatures

    Optimal Power Consumption

    ESP32-S2 supports fine resolution power control through a selection of clock frequency, duty cycle, Wi-Fi operating modes and individual power control of its internal components. 

    • When Wi-Fi is enabled, the chip automatically powers on or off the RF transceiver only when needed, thereby reducing the overall power consumption of the system. 
    • ULP co-processor with less than 5 uA idle mode and 24 uA at 1% duty-cycle current consumption. Improved Wi-Fi-connected and MCU-idle-mode power consumption.



    ESP32-S2 supports Espressif’s software development framework (ESP-IDF), which is a mature and production-ready platform, already used by millions of devices deployed in the field. Availability of common cloud connectivity agents and common product features shortens the time to market.



    ESP32-S2 offers a universal Wi-Fi connectivity solution for a variety of applications, ranging from consumer to industrial use-cases. Furthermore, the computing power and memory expandability also makes it a suitable solution for simple ML-on-edge applications. 

    While it can support a large number of use-cases, the main target application use-cases are listed below:

    Smart-Home Connectivity

    Ranges from simple solutions like light bulbs, smart door-locks, smart sockets to white goods and kitchen appliances, over-the-top (OTT) devices and video streaming devices like security cameras

    • Supports Mesh Network, which can be applied to large-scale commercial lighting and smart-home network solutions.
    • Allows efficient interfacing with a wide range of sensors, which is suitable for the needs of different smart-home scenarios.

    Battery-operated devices

    Connected Wi-Fi sensors, Wi-Fi enabled toys, wearable and healthcare devices

    • Small 7 mm ⨉ 7 mm QFN package, which is ideal for wearable devices
    • Low power consumption, in hibernation mode, of less than 5 uA enables application in battery-operated devices or long standby-time devices
    • QSPI/OPI supports multiple flash/SRAM chips for flexible configuration of NVM and volatile data storage

    Industrial automation

    Industrial automation includes wireless control and robotics, smart lighting, HVAC control, which can ensure high-quality technology development and a long life-cycle for products.

    • With its high RF performance and security features, it can meet strict requirements and high standards of reliability and efficiency for electronic control.

    Retail & Catering Applications 

    POS machines and service robots

    • Advanced security features enable the protection of sensitive data on the chip and the flash device
    • Small form factor 
    • With 14 highly sensitive touch sensors and an LCD interface, ESP32-S2 targets low-cost securely connected HMI devices, such as POS machines


    Engineering Samples of ESP32-S2 beta will be available in June.

    For more information, please contact Espressif Business Team.

    Qu’est-ce que NB-IoT ?

    Usages de NB-IoT

    NB-IoT ou Narrowband IoT est un nouveau standard de communication Low Power Wide Area Network (LPWAN ou Réseau basse consommation longue portée) spécialement conçu pour l’Internet des objets (Internet Of Things) développé par 3GPP (Third Generation Partnership Project, l’organisation derrière la standardisation des réseaux cellulaires).


    Graphique représentant l'évolution exponentielle du nombre d'IoT dans le monde jusqu'à 2025








    Source: statista



    Avec l’avènement de l’IoT, les problématiques liées à l’industrie 4.0 et la prédiction des experts d’avoir plus de 75 Milliards d’objets connectés à l’aide d’un réseau sans fil d’ici 2025, il est nécessaire de créer des technologies adaptées à ces nouveaux besoins. Ce standard permet aux objets connectés de communiquer de gros volumes de données sur de très grandes distances avec une latence très élevée.

    Certains annoncent même que cette technologie représente le futur des standards de communication IoT et sera celui le plus utilisé d’ici 2025.

    Nous allons donc vous présenter ce nouveau standard en détail afin d’appréhender les avantages pour l’IoT.


    NB-IoT en détails

    Modes opérationnels de Narrowband IoT








    Source: Ericsson



    NB-IoT ou Narrowband IoT ou encore appelé LTE-M2 est une technologie basse consommation et longue portée (LPWAN) validée en Juin 2016 qui peut fonctionner de trois manières différentes:

    • Sur la bande de fréquence 200 kHz anciennement le réseau GSM
    • Avec le réseau LTE qui réserve des ressources pour NB-IoT
    • Au sein d’un réseau indépendant

    Le spectre de fréquence GSM de 200kHz est peu utilisé aujourd’hui et laisse donc potentiellement la place, pour ce type de technologie, d’apporter une nouvelle solution LPWAN.

    Tout comme LoRa et Sigfox, ce standard permet à des objets basse consommation de communiquer  avec des applications externes à travers le réseau cellulaire.

    Partage des bandes de fréquences LTE NB-IoT








    Source: Couche physique de NB-IoT [EN]



    Le constructeur Chinois Huawei est un fervent défenseur de cette technologie déjà disponible en Chine. Il a fortement contribué ces dernières années dans la définition technique de cette technologie.

    Cas d'utilisations de Nb-IoT

    Echange d’un grand volume de données

    A la différence de LTE-M, il n’est pas basé sur le protocole IP mais utilise tout de même un protocole basé sur l’échange de message (message based). Il a pour avantage de proposer un taux de modulation plus rapide que LoRa ou Sigfox. Il peut donc échanger une plus grande quantité de données à un rythme moins élevé. LTE-M quant à lui, est plus adapté à des applications qui nécessitent une plus grande bande passante.


    Une latence élevée

    Techniquement NB-IoT utilise donc la bande de fréquence de 200kHz et la modulation OFDM pour les communications entrantes et SC-FDMA pour les communications sortantes. Par son design, il n’est pas prévu d’avoir des temps de réponse de l’ordre de la milliseconde.

    Il permet d’avoir des débits de 20 à 250Kbit/s en download ou upload avec une latence inférieure à 10 secondes environ. La latence (latency), dépendra de la qualité de la puce de communication, du réseau, de la qualité de réception et de la distance avec l’antenne la plus proche.


    Utilisation des réseaux mobiles existants

    NB-IoT s’appuie sur les réseaux 4G existants dont un certain nombre de fonctionnalités et mécanismes sont hérités. Il est donc compatible avec une mobilité à l’international grâce à l’itinérance aussi appelé roaming. Cela signifie aussi que ces réseaux sont accessibles sous licence et sont pilotés par des opérateurs spécialisés dans le domaine. La qualité du réseau est donc gérée par des experts du métier.

    NB-IoT est considéré 5G ready, c’est à dire qu’a sa sortie il pourra être compatible avec cette nouvelle norme de transmission.

    Nous sommes donc face à une technologie qui est loin d’être temps réel à cause de sa grande latence. Les cas d’utilisation sont donc pour des besoins qui ne nécessitent pas ce type de contrainte.


    Les avantages de NB-IoT

    Les avantages de NB-IoT








    source: Accent systems



    Cette nouvelle technologie apporte un certain nombre d’avantages par rapport à son domaine d’utilisation.

    La faible consommation

    Le premier point critique dans le domaine des objets connectés est la consommation électrique. Comme vu plus haut, le nombre de devices intelligents ne fait qu’augmenter. Il est donc primordial que ces supports consomment le moins possibles pour plusieurs raisons:

    • Lutter contre la surconsommation électrique
    • Il n’est pas envisageable de recharger ou changer des batteries d’un tel nombre d’IoT
    • Pourquoi consommer de l’énergie alors que ce n’est pas nécessaire ?

    Cette technologie est dites LPWAN donc répond aux standards de consommation minimale.


    La fiabilité

    La communication de ces objets via NB-IoT n’est certes pas temps réel mais se doit d’être fiable dans le temps. En s’appuyant sur des réseaux existants et sous licence, les opérateurs sont déjà en charge de la qualité de service de ceux-ci. Ils pourront ainsi garantir une QoS (Quality Of Service) suffisante pour ce type de fonctionnement.


    Diminution des coûts

    La simplicité du standard sur lequel repose cette technologie permet de créer des puces de communication peu onéreuses. En effet, une puce qui supporte uniquement NB-IoT est beaucoup moins chère à produire qu’un module qui implémente LTE-M par exemple. De plus, le fait d’être orienté très faible consommation, c’est encore une économie substantielle.

    Contrairement à certains autres technologies, il n’y a aucunement besoin d’une passerelle (gateway) pour que cela fonctionne.


    Une couverture plus adaptée

    Reposant sur le réseau actuel de la 4G ce mode de communication est aussi bien adapté pour une utilisation en intérieur (Indoor) ou en extérieur. Ainsi la seule problématique, quand il sera implémenté, sera de vérifier la couverture des localisations de vos devices IoT.


    Cas d’utilisations

    Ce standard a été pensé pour de nombreuses applications et cas d’utilisation pour le domaine de l’IoT et l’IIoT (Industrial Internet Of Things). On retrouve entre autre:

    • Les objets pour la mesure intelligente comme pour l’électricité, le gaz ou l’eau (compteur d’eau) par exemple
    • Les systèmes de surveillances comme les alarmes ou les alarmes incendies
    • Les villes connectées ou smart city qui permet de piloter par exemple les lampes, le mobilier urbain ou encore le suivi du remplissage des poubelles
    • La mesure des données de santé personnelles à l’aide d’objets connectés
    • Le domaine médical trouvera un avantage certain pour la surveillance des constantes de santé à distance comme le montre le document disponible ici.
    • L’état de certaines machines industrielles qui ne nécessitent pas un fonctionnement temps réel

    Il existe de nombreux cas d’utilisations auquel répond NB-IoT. Les cas présentés ci-dessus se veulent réels et sont des problématiques ou des sujets de réflexion actuels. Mais de manière générale tout objet connecté qui aurait besoin de communiquer sur de longues distances et qui ne nécessitent pas des temps de réaction trop rapides pourraient être concernés.

    Advantech commence dores et déjà à créer des solutions d’acquisition de données ou de communication industrielle qui implémentent NB-IoT. Vous pouvez les retrouver sur cette page.


    Etat du déploiement de NB-IoT

    Carte de la couverture mondiale de NB-IoT 
    Source: gsma.com Mobile IoT Deployments

    NB-IoT ne peut fonctionner « out of the box » sur le réseau actuel 4G sans l’implémentation du standard par les opérateurs en charge de la couverture mobile du territoire qui vous concerne.

    Aujourd’hui la France n’a toujours officiellement lancé aucun réseau qui implémente cette nouvelle technologie. Donc NB-IoT n’est, pour le moment, officiellement pas disponible en France. Cependant l’opérateur SFR travaillerait sur ces sujets en partenariat avec des industriels du secteur. Orange, quant à lui, a lancé des zones de tests pour LTE-M mais aucun travaux sur NB-IoT semble en cours (Alors qu’ils ont déployés NB-IoT en Belgique)

    Pour rappel la France a vu naître deux technologies concurrentes à savoir Sigfox et LoRa ce qui explique l’état de déploiement actuel de NB-IoT.