Sélectionner une page

New healthcare sensors enable ultra-small size, lowest power and clinical-grade accuracy for next-gen wearables

 

–  Designers creating next-generation wearable health and fitness applications can reduce temperature measurement power by 50% with the MAX30208, as well as shrink optical solution size by 40% with the MAXM86161 from Maxim Integrated Products, Inc. In addition, design engineers can improve both sensitivity and accuracy with the highest signal-to-noise ratio (SNR) using the MAXM86161.

To provide value, wearable health and fitness monitors require greater accuracy in measuring human biometrics such as body temperature and heart rate, but device designers have been limited by sensor accuracy for small, battery-powered, body-worn devices. Maxim’s two new continuous-monitoring body sensors provide higher degrees of accuracy in measuring vital signs such as temperature, heart rate and blood-oxygen saturation (SpO2).

The MAXM86161 in-ear heart-rate monitor and pulse oximeter is the market’s smallest fully integrated solution that delivers highly accurate heart-rate and SpO2 measurements from hearables and other wearable applications. It is optimised for in-ear applications with its industry-leading small package size (40% less than the closest competitor) and best-in-class SNR (3dB improvement with band limiting signal for PPG use cases compared to closest competitor).

This enables development of devices that cover a wider range of use cases. MAXM86161 delivers approximately 35% lower power to extend battery life of wearables. In addition, an integrated analog front-end (AFE) eliminates the additional AFE typically needed to procure a separate chip and connect to the optical module.

The MAX30208 digital temperature sensor delivers clinical-grade temperature measurement accuracy (±0.1°C) with fast response time to changes in temperature. It also meets the power and size demands of small, battery-powered applications such as smartwatches and medical patches. It simplifies the design of battery-powered, temperature-sensing wearable healthcare applications.

Easier to use than competitive offerings, it measures temperature at the top of the device and does not suffer from thermal self-heating like competitive solutions. MAX30208 is compatible with up to four I2C addresses to enable multiple sensors on the same IC bus. The MAX30208 can be attached to either a PCB or a flex printed circuit (FPC).

Key advantages

–  High accuracy: MAX30208 delivers ±0.1°C accuracy in the range of 30°C to 50°C and eliminates thermal self-heating, a factor that affects measurement accuracy in competitive devices. MAXM86161 cancels ambient light for greater accuracy and provides highest SNR (Nyquist SNR is 89dB; 100dB SNR with averaging). In addition, Maxim provides algorithms for motion compensation to increase measurement accuracy.

–  Lowest power: To extend battery life of wearables, the MAXM86161 consumes approximately 35% lower power versus the closest competitor, with less than 10µA operating power (typical at 25sps) and 1.6µA in shutdown mode. Compared to the closest competitive solution, the MAX30208 consumes only half the power (67µA operating current during active conversion vs. 135µA) under a representative use case.

–  Ultra-small size: MAXM86161 is available in an OLGA package (2.9mm x 4.3mm x 1.4 mm), which is 40% smaller than the closest competitor. MAXM86161 includes three LEDs—red and infrared for SpO2 measurement and green for heart rate; MAX30208 is available in a 10-pin thin LGA package (2mm x 2mm x 0.75mm).
“Wearable devices continue to gain market traction, with global revenue now estimated to grow from $56.4 billion (€51.1 billion) in 2019 to $78.3 billion (€71 billion) by 2022 at a 4-year compound annual growth rate (CAGR) of 13%,” said James Hayward, principal analyst at IDTechEx Research.

 

“Major growth drivers include additional value captured in the growth and evolution of products such as smartwatches and ear-worn products, alongside the adoption of dedicated wearable devices in key healthcare verticals.”.

 

Posted by ANASIA D’MELLO

IoT Applications in Construction

The construction industry is bringing real-time information into processes that are centuries old. Internet of Things (IoT) devices and sensors are collecting job site data in a more affordable, efficient and effective way than previously imaginable.

The construction job site is now ripe for fundamental changes that enable productivity, safety, process improvement and new tools. The Internet of Things (IoT) is allowing for the deployment of simple low power sensors that are able to communicate cost-effectively. As IoT continues to become more ubiquitous, it’s having a greater impact on how the construction industry is turning around. IoT makes it possible for every stakeholder to understand what’s happening at every stage of the construction process in real-time from planning to actual construction, post-construction and how the building is operated during service.

While the construction industry is changing at a glacial pace, construction companies who are adopting technology to successfully address common workplace concerns and streamline processes are benefitting from increased efficiencies and improved responsiveness to the increasing demands of the industry. Flat productivity, decreased margins, more schedule overruns and increased competition are some of the obvious reasons construction companies should consider the adoption of IoT technology and digitization. Data has now become a critical asset for business, and informed decisions can only be data-driven.

Generally, productivity, maintenance, security and safety appear to be the leading drivers of IoT adoption in the construction industry.

Productivity

The construction sector is conditioned by deadlines and targets. It’s mandatory to avoid backlogs because they result in budget increases. IoT can enable more readiness and efficiency thus improving productivity. IoT leaves people with less menial work, and, instead, they’re allocated more time to interact with project owners and amongst themselves, generating new ideas to improve project delivery and customer satisfaction.
Construction requires an adequate supply of materials to ensure the smoothness of the project. However, the late supply of materials often occurs at the site due to poor scheduling caused by human error. Through IoT, the supply unit is fitted with a suitable sensor it’s possible to automatically determine the quantity and make automatic orders or raise alarms.

Maintenance

Power and fuel consumption will result in wastage if not actively managed, and that will impact the overall cost of the project. Through the availability of real-time information, it becomes possible to know the status of every asset, to schedule maintenance stops or refueling and turn-off idle equipment. Further, field sensors help to prevent problems from happening, which reduces warranty claims, helping the bottom line and keeping customers happy. Beyond notifications for decreasing stocks, sensors can be used to monitor materials condition like the suitability of the temperature or humidity of the item/environment, handling issues, damage and expiration. Equipment suppliers have had to evolve from just being suppliers to partners who continuously monitor and maintain equipment, leaving clients to focus on their core business.

Safety and Security

Some of the biggest challenges encountered on a construction job site are theft and safety. Human security agents are not adequate to monitor a huge site properly. Using IoT enabled tags, any material or theft of items is easily resolved as these sensors will notify the current location of the materials or item. It’s no longer necessary to send a human agent out to check out everything.

IoT allows for the creation of a digital real-time job site map together with the updated risks associated with the works and notifies every worker when getting closer to any risk or entering a dangerous environment. For example, monitoring the air quality in an enclosed space is critical for workplace safety. IoT technologies will not only prevent staff from being exposed to dangerous conditions but can also detect those conditions before or as they happen. With real-time IoT data, workers are empowered to be more predictive about job-site issues and prevent situations that could lead to a safety incident and lost time.

Handling equipment and machinery for too long may also cause workers to experience fatigue, which in turn disturbs their concentration and productivity. IoT makes it possible to monitor signs of distress like abnormal pulse rates, elevations and user location.

Multi-Technology: The Future of Geolocation

Successful IoT geolocation requires multi-technology solutions that leverage cellular, Bluetooth, LP-GPS, WiFi, and more while focusing on next-gen LPWAN.

In the big world of IoT, location tracking is the next frontier! Location tracking for humans is already an integral part of our lives, especially for navigation. Traditional technologies enabling this are not only expensive; they also have technical boundaries that prevent successful scaling. For IoT geolocation to become a reality, it must be extremely accurate, very low cost, and significantly low touch.

Where Is the Market?

Research and Markets predict revenues from “Geo IoT” will reach $49 billion by 2021.

Research and Markets report in “Geo IoT Technologies, Services, and Applications Market Outlook” that just as location determination has become an essential element of personal communications, so shall presence detection and location-aware technologies be key to the long-term success of IoT. They add that Geo IoT will positively impact many industry verticals.

Connecting IoT objects is already a large market growing exponentially with the mix of unlicensed Low-Power Wide Area Network (LPWAN) technologies such as LoRaWAN, and combined more recent introduction of Cellular IoT technologies such as NB-IoT and LTE-M. Adding Geolocation to this introduces a whole range of new applications not possible before. Some of these applications are:

  1. Asset management
  2. Fleet management
  3. Anti-theft scooter/bike rental
  4. Logistics/parcel bags tracking
  5. Worker safety for oil and gas
  6. Elderly and disabled care
  7. Tracking solution for skiers
  8. Pets and animal tracking

The above applications represent a large existing market that can only be captured with extremely low cost and low power trackers. 

The Challenges of Asset Tracking

Whether it’s railway cars, truck trailers, or containers, tracking valuable assets on the move is a pain point for many large, distributed organizations involved in logistics and supply chain management. These large organizations typically rely on partners such as distributors to register check-in and check-out events correctly.

The registration process at specific checkpoints is usually manual, intermittent, and subject to human error.  To address this issue, an IoT low-power asset tracking system that leverages Low Power Wide Area Network (LPWAN) trackers brings a “timeless” checkpoint solution. Specifically, LoRaWAN™-based trackers, due to their low power, low cost and lightweight, standardized infrastructure, provide the first truly reliable tracking solution that allows logistics operators to reduce downtime during transportation. 

In the logistics sector, many business use cases suffer additional costs due to inefficient utilization of assets. Transport companies need to invest in freight railway cars; car logistics companies need to invest in truck trailers; and, of course, there are the standard containers and pallets.

The profitability of #AssetTracking business use cases directly depends on the minimization of asset downtime: every day or hour lost in a warehouse, lot, or rail station reduces the given asset’s #profit potential. || #IoT @ActilityCLICK TO TWEET

However, measuring this downtime is also a challenge. Traditional solutions involved cellular or satellite trackers, which require significant CAPEX, but perhaps more importantly also ongoing OPEX due to battery replacements and connectivity costs. In some cases, trackers are located in hard-to-reach areas especially when mounted on railroad cars, or in oil and gas rigs, which make it very costly to replace batteries—especially if there are hundreds of thousands of trackers deployed in the field.

For now, at least, humans do battery replacement. It’s one of the dominating OPEX factors in the Total Cost of Ownership ( TCO) of the whole IoT solution. These replacement costs actually made it difficult to justify the mass adoption of conventional geolocation solutions in the logistics sector.

LPWAN Trackers: a Game Changer

LoRaWAN is the LPWAN connectivity standard developed by LoRa Alliance—primarily for unlicensed ISM spectrum—to disrupt both existing technology and business models.

On the technology front, LoRaWAN’s main impact pertains to a drastic reduction in power consumption. Reducing battery usage ultimately affects OPEX-related to ongoing maintenance. It also creates new opportunities for more dynamic tracking, as communication events are less costly.

On the business model side, logistics companies can now trade off between CAPEX and OPEX: most LPWAN systems operate within an unlicensed band. For example, the leading LoRaWAN™ technology operates in the 915MHz band in the US, the 868MHz band in Europe, and equivalent ISM bands in other parts of the world. This means that logistics companies can invest in their own wireless networks to reduce or eliminate variable connectivity costs.

The cost of LPWAN network gateways has decreased due to higher production volumes. They’re now affordable even for very small logistic centers, such as a car distributor.

Next Generation LPWAN trackers

The potential of LPWAN-enabled tracking requires a new generation of hardware. The lower radio frequency and lower power consumption are only parts of a massive effort to decrease the power consumption of entire IoT systems. In order to achieve the latter, we would need to develop a “multi-technology geolocation tracker platform” that can combine GPS, Low-Power GPS, WiFi Sniffing, WiFi fingerprinting, and Bluetooth. The goal is to reduce overall power consumption while providing location information opportunistically in a variety of scenarios (e.g. indoor/outdoor, urban/rural, slow/fast moving, and so on).

Another key factor of such a multi-technology solution is the usage of LPWAN technologies such as LoRaWAN, NB-IoT, and LTE-M for backhauling geolocation data to the cloud. This is the key. Traditional cellular technologies, such as 2G/3G/4G, are just too power hungry to meet the target goal of 5-10 year battery lifetime. However, there will be licensed Cellular IoT options based on NB-IoT/LTE-M that will also be used for some of the applications.

Actility argues, “Merging an IoT network solution like LoRaWAN with multi-mode geolocation technologies for outdoor and indoor positioning would increase battery lifetime at least ten times more than the standard cellular solution using GSM/AGPS.”

As demonstrated below, LoRaWAN and LP-GPS (AGPS/GPS) significantly increases battery lifetime.

Image Credit: Actility

A Multi-Technology Future for Geolocation

The future of IoT geolocation will require a commitment to robust multi-technology development. We’ll need multi-technology cloud platforms that will intelligently combine Over-The-Top (OTT) geolocation technologies—such as GPS, Low-Power GPS, WiFi, and Bluetooth—with network-based TDoA geolocation technologies using LoRaWAN and/or cellular. Such innovations require close cooperation between public network operators and geolocation service providers. 

La puce-système NB-IoT avec géopositionnement par satellite du chinois Nurlink est opérationnelle

Dévoilée en avant-première fin février à l’occasion du Mobile World Congress, la puce-système SoC NK6010 compatible NB-IoT de la start-up chinoise Nurlink, créée en 2017, est désormais opérationnelle. Une première communication « réelle », sur la région de Nankin en l’occurrence, a pu être mise en œuvre entre la puce et la plate-forme IoT dans le nuage de China Telecom via le réseau NB-IoT de l’opérateur.

Selon la firme américaine Ceva qui a cédé sous licence à Nurlink sa plate-forme Ceva-Dragonfly NB2, c’est une étape majeure vers la production en volume du SoC de la jeune société chinoise.

Pour rappel, la plate-forme Ceva-Dragonfly NB2, annoncée il y a tout juste un an, est une solution modulaire et intégrée compatible avec la spécification 3GPP Release 14 eNB-IoT (enhanced NB-IoT) dite Cat-NB2 (en référence à la spécification 3GPP Release 13 NB-IoT dite Cat-NB1). Elle s’articule autour du processeur Ceva-X1 bâti sur une architecture DSP+CPU à cœur unique et doté d’instructions ad hoc, et fournit un environnement unifié pour l’exécution à la fois de la couche physique et de la pile de protocoles eNB-IoT (également incluses dans la solution).

Pour les utilisateurs qui développent des produits NB-IoT qui exigent aussi des fonctions de géolocalisation par satellite, la solution Ceva-Dragonfly NB2 dispose en option d’un package matériel GNSS (Global Navigation Satellite System) avec récepteur RF et frontal numérique multiconstellation.

A ce titre, la puce-système NK6010, qui cible des marchés comme les compteurs communicants, les dispositifs électroniques portés sur soi, les traceurs d’actifs et les capteurs industriels, intègre un frontal RF, un émetteur/récepteur RF, un sous-système radio cellulaire en bande de base, une unité de gestion de la consommation et un processeur d’application. Selon son concepteur, elle est apte à communiquer dans toutes les bandes de fréquence NB-IoT exploitées par les opérateurs mobiles les plus importants. Le SoC embarque également un sous-système de positionnement par satellite multiconstellation (GPS, Beidou, Galileo et Glonass) à ultrabasse consommation.

« La plate-forme Ceva Dragonfly-NB2 nous a permis de réduire considérablement notre time-to-market car elle a fourni la plupart des briques de base de notre SoC, des éléments clés qui avaient déjà été validés sur silicium et préintégrés, précise Kong Xiao-Hua, le CEO de Nurlink. Programmable, la solution nous a quand même permis d’ajouter notre propre valeur ajoutée et de réaliser un produit vraiment différentié. Quinze mois nous a suffi pour passer de l’accord de licence à une première communication NB-IoT réelle avec notre silicium et nous sommes déjà engagés avec plusieurs opérateurs de par le monde pour certifier notre puce-système. »

New LTE Modules Developed Specifically for CBRS Applications

Sequans has introduced two new modules optimized for the design of devices for LTE CBRS(Citizens Broadband Radio Service) networks. The CB610L and CB410L are the first two modules designed from the ground up to enable easy and massive deployment of IoT devices on private LTE CBRS networks.

They are cost-effective modules that can support a wide range of medium data rate applications – including industrial IoT and M2M devices, gateways, and broadband consumer devices – and the very small form factor LCC package enables easy mounting into small and thin devices or mini-PCI or M.2 NGFF carriers.

According to Mobile Experts – Key building blocks for the CBRS market have been solidified, which means the market is ready for a commercial rollout beyond trials. They expect a surge in small cell shipments between 2020 and 2023 – an annual shipment of about 400,000 small cells and radios will result in sales of over $900 million, and more than 550 million handsets, CPEs, and IoT devices cumulatively shipped during that time.

Sequans is a member of the CBRS Alliance, an industry organization dedicated to supporting the development, commercialization, and adoption of LTE solutions for the US 3.5 GHz Citizens Broadband Radio Service. 

Sequans CBRS  Modules Product Features:

  • Available in two versions:
    • CB610L for LTE Cat 6          
    • CB410L for LTE Cat 4          
  • All-in-one standalone module solutions      
  • Easy integration into IoT, M2M, and broadband devices      
  • 3GPP Release 10      
  • Small LCC (leadless chip carrier) package, 32 x 29 mm      
  • Supports CBRS networks in USA on LTE band 48, and MNO networks worldwide on LTE bands 42/43      
  • Includes drivers for all major host operating systems      
  • Includes a comprehensive set of interfaces      

The CB610L and CB410L modules are based on Sequans’ Cassiopeia LTE-Advanced platform, which is compliant with 3GPP Release 10 specifications. Cassiopeia supports a frequency range from 170 MHz up to 3.8 GHz and highly flexible dual-carrier aggregation that allows the combination of any two carriers of any size up to 20 MHz each, contiguous or non-contiguous, inter-band or intra-band. Cassiopeia also includes Sequans’ advanced receiver technology for improved performance. 

CB610L and CB410L are ideal for adding LTE connectivity to electronics devices for industrial Internet of Things (IoT), Machine-to-Machine (M2M) and broadband consumer applications. The LCC package allows for a cost-efficient platform and simple PCB design. The modules support a wide variety of interfaces, including USB 2.0 host and device, SDIO 3.0 host, USIM, UARTs, GPIOs, SPI and I2S/PCMTDM for audio.

From idea to finished product

Everything starts with the discovery of a need. Sometimes we ourselves see a need that nobody has seen before. At other times the signal comes from our users. Irrespective of where the thought is born, we are always eager to do a thorough job to develop the best solution.

Initially we gathers to examine the need. At this stage we visit which experience this need. A thorough evaluation of current working methods and their advantages and disadvantages is performed.

A creative but thorough work

When we have created a good understanding of the need, work starts on finding the best possible solution regarding functionality, safety and efficiency. Different ideas and thoughts are tested in the development group.

Finally, when we have come so far that we have a first prototype, extensive internal testing starts. Here the product is often changed on many points in order to even better solve our customers’ needs.

Tests under real conditions

But in order really to get a confirmation that our solution fits the needs of our users, it is time for a validation. A number of prototypes are placed at customers with whom we are in close collaboration. They get to test the product for a certain period and then revert with their points of view.

A new innovative product reaches out to the entire world

After having performed any modifications based on these tests, the product is ready for production. From the point when a need is discovered, the whole world now has the possibility to use the solution in order to perform day to day activities.