Sélectionner une page
IoT use in healthcare grows but has some pitfalls

IoT use in healthcare grows but has some pitfalls

 

The future looks bright for the use of IoT in Healthcare. The global portable and remote patient monitoring market alone is expected to reach $43 billion by 2027. The Covid-19 pandemic has accelerated this scenario. According to IDC, by the end of this year, seven of the top ten wrist wearables companies will have launched algorithms capable of early detection of potential signs of infectious diseases.

Although the healthcare sector has taken longer to adopt Internet of Things technologies than other industries, the Internet of Medical Things (IoMT) is now at the heart of the digital healthcare ecosystem. This ecosystem includes patients and medical teams, medical devices (e.g., diagnostic and imaging), surgical robots, wearables, smart devices, and countless wireless sensors, all of which share confidential patient data.

When ordinary portable medical devices are connected to the Internet, they can collect essential data that can save lives. They also serve to provide extra insight into the symptoms and trends of any specific physiological or even psychological disorder.

Similarly, wearable devices are reshaping the way patients receive medical care. They help collect and transfer essential information to doctors, such as heart rate, oxygen level, blood pressure, weight, ECGs, and blood sugar levels.

From an industry perspective, all this data can help hospitals, pharmaceuticals, and life science companies make better decisions and gain a competitive advantage.

By 2023, 65% of patients will access care through a digital connection. By 2024, data proliferation will result in 60% of healthcare organizations’ IT infrastructure is built on a data platform that will use AI to improve process automation and decision-making. When coupled with AI (Artificial Intelligence) and ML (Machine Learning), IoT can help find potential cures and treatments for diseases.

But the use of IoT in healthcare has its pitfalls – in general, IoT devices cannot be centrally managed, patched, updated, or secured. They are simple and functional, making them vulnerable to exploitation by cybercriminals, as most of them were not designed with security in mind. The possibility that a zero-day exploit on a medical device could be used to harm or even kill someone undetected is real.

Therefore, data intrusion and loss and the potential to take control of a device should be top of mind for healthcare IT teams. Each type of connected medical device has its own set of complexities that need to be protected at the time of product design. Each device has an application programming interface (API), a user interface, a URL, and often interfaces for HDMI, Bluetooth, or WiFi, all of which can be exploited if not properly secured by the device manufacturer and users.

Concerned about this, the US Food and Drug Administration (FDA) released guidance in 2019 to assist the industry by identifying cybersecurity-related issues that IoMT device manufacturers should consider in designing and developing their products. The Content of Premarket Submissions for Management of Cybersecurity in Medical Devices – Guidance for Industry and Food and Drug Administration is aligned with NIST’s Cybersecurity Framework and recommends that medical device manufacturers consider detecting, identifying, recording, and recording, if possible, quickly correcting security compromises. In line with these essential functions, FDA suggests security measures that device manufacturers should consider for the protection of medical devices, which include:

  • Ensure secure transfer of data to and from the device, using encryption where appropriate;
  • Provide information to end-users on the appropriate actions to take upon detection of a cyber security event;
  • Leverage hazard analysis, mitigation, and design considerations relating to cybersecurity risks associated with the device;
  • Have a plan for validated software updates and patches as needed throughout the device lifecycle to continue to ensure its security and efficiency.

As cybersecurity risks for medical devices are constantly evolving, the FDA cannot fully mitigate the risks. Which makes effective cybersecurity risk management, protection, and monitoring of IoT devices, legacy operating systems, and health records for healthcare organizations a paramount concern. And this should be a shared responsibility among stakeholders, including medical device manufacturers and hospitals.

Everyone should invest time and resources to:

  • The constant monitoring of cybersecurity information sources for identification and detection of cybersecurity vulnerabilities and risks;
  • The implementation of robust software lifecycle processes that include mechanisms to monitor third-party software components for new vulnerabilities throughout the total product lifecycle;
  • The design verification and validation of software updates and patches used to mediate vulnerabilities, including those related to off-the-shelf software;
  • The understanding, assessment, and detection of the presence and impact of a vulnerability;
  • The establishment and communication of processes to capture and address vulnerabilities;
  • The use of threat modeling to clearly define how to maintain the security and core performance of a device by developing mitigations that protect, respond and recover from cybersecurity risk;
  • The adoption of a coordinated vulnerability disclosure policy and practice;
  • The implementation of mitigations that address cybersecurity risk at the outset and prior to its exploitation.

Network monitoring solutions with capabilities to integrate medical devices offer healthcare providers the ability to monitor vital data connections, servers, and the applications involving those devices. Not least because all medical devices require a classic IT infrastructure for communication. This infrastructure takes care of data transfer and provides the hardware for the system network. It requires cables, switches, servers, and storage systems, as well as WIFI and access points. But the hospital IT infrastructure imposes an additional challenge on IT professionals: it also takes care of the specialized healthcare systems, as often all elements and systems of a hospital, for example, coexist in the same infrastructure.

For example, Musgrove Park Hospital in the UK uses Paessler’s PRTG Network Monitor to oversee its network, following NHS Digital cybersecurity recommendations. PRTG monitors the internal and external network and is configured on 10,950 Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven International (HL7) sensors.

These sensors empower IT professionals and healthcare administrators to monitor a variety of critical systems and functions, including:

  • Hospital Information Systems (HIS, HIS): PRTG makes it possible to view what is happening across the integrated HIS, not only the relationship with data exchange but also the computing resources and devices involved. Notably, PRTG can be deployed on-premises or in the cloud and has specially designed sensors for many of the industry’s most widely used IT solutions, including those from Amazon Web Services, Cisco, Fujitsu, Microsoft, NetApp, VMware, and others. With PRTG, it has never been easier for hospital IT departments to fully monitor their medical, financial, and administrative systems.
  • Laboratory Information Management Systems (LIMS): PRTG also facilitates oversight of all systems and devices integrated into laboratory processes, as well as the data transported between them, including information regarding sample management, testing, analysis, disposal, and compliance. Monitoring also ensures that clinicians and clinical teams have quick access to the findings they need.
  • Radiology Information Systems (RIS): All radiology and imaging department systems, hardware and software, and associated workflows can be monitored through PRTG’s intuitive dashboard – empowering IT to easily determine the cause of any delays in image delivery between devices, departments, or clinicians.
  • Picture Archiving and Communication System (PACS): PRTG also monitors the entire PACS, making it possible to ensure that all systems required for secure image movement, storage, and archiving are functioning as expected. This includes the workstations used to view and interpret scans.
 

Source: Paessler

Therefore, IoT in healthcare presents several security and confidentiality components that must be taken seriously and planned for in advance. The key to success is visibility. With so many potential points of failure, teams involved with the Internet of Medical Things (IoMT) need to be aware of any potential failures at all times and often be able to resolve issues before they occur.

    EUROGLAS utilise le système “Track & Trace” de HeronTrack pour la surveillance de leurs chevalets.

     

     

    Le producteur de verre Euroglas-De Landtsheer a fait équiper 700 chevalets de vitrage au moyen des sensors de HeronTrack.  Ainsi, cette société a toujours un aperçu exact de son stock et peut économiser des frais de remplacement inutiles.  Dans cet article, vous découvrirez comment le système fonctionne et quels sont les avantages qui en découlent.

    Frederik De Knijf, CEO d’Euroglas-De Landtsheer nous raconte : “Un chevalet coûte entre 500,- et 750,- EUR.  Chaque année, nous devons investir pas moins de 50.000,- EUR dans le remplacement de plusieurs chevalets de vitrage, qu’ils soient abîmés, perdus, égarés ou tout simplement prêtés.  Nous souhaitons limiter, au strict minimum, ces frais importants et nous pensons que la solution la plus efficace réside dans une meilleure gestion de notre stock, nous permettant de retrouver rapidement les chevalets égarés”.

    Pose de sensors Track & Trace sur 700 chevalets de vitrage.

    C’est ainsi que la société Euroglas-De Landtsheer décida d’utiliser les sensors ‘Track & Trace’ de HeronTrack.  Ces sensors furent donc installés sur pas moins de 700 chevalets, permettant ainsi au département logistique de visualiser l’endroit exact où se trouve leur matériel, que celui-ci soit en Belgique ou même à l’étranger.

    La plus-value des sensors de HeronTrack s’est rapidement fait ressentir.  Grâce à ce nouveau système, Euroglas-De Landtsheer retrouve sans perdre de temps tous ses chevalets alors que certains étaient égarés chez des fournisseurs ou clients.

    Les sensors de HeronTrack se distinguent par leur facilité d’utilisation, leur petit format, une durée de batterie allant de 5 à 7 ans et naturellement leur excellent rapport prix/qualité.

    Comment fonctionne le système Track & Trace ?

    HeronTrack travaille sur base de deux éléments : un sensor qui est tout simplement fixé sur le chevalet (ou l’outil) et la plate-forme Software qui peut être consultée via l’application mobile ou online.  Grâce à l’application mobile, les chauffeurs de Euroglas-De Landtsheer retrouvent aisément tous les chevalets dans les environs.  Chaque mouvement est automatiquement communiqué. Simultanément, le sensor transmet 2x par jour sa position GPS vers la plate-forme.  Via cette plate-forme online, les responsables du département logistique peuvent retrouver tous les chevalets sous forme d’un rapport ou d’un rendu visuel.  A partir du moment où vous activez le modus antivol du sensor, ce dernier envoie toutes les 10 minutes un ‘update’ de sa position actuelle.  Ainsi, vous pouvez retrouver rapidement le matériel volé ou égaré.

    Envie d’en savoir plus sur le fonctionnement de notre système ‘track & trace’ ?

    Une couverture précise et une localisation étendue sur plus de 50 pays.

    Les sensors de HeronTrack communiquent via Sigfox avec le réseau public de engieM2M afin de détecter la position des chevalets.  Pas uniquement dans le Benelux mais aussi dans toute l’Europe, même à des endroits où le réseau est faible.  En outre, le réseau Sigfox RC1 garantit une couverture internationale dans plus de cinquante pays, jusqu’en Afrique et au Moyen-Orient.

    Ensuite, la technologie BLE veille à une connexion continue vers les smartphones des chauffeurs et des collaborateurs sur chantier.  Cette connexion fonctionne même à l’intérieur, de telle manière que la couverture et la position donnée sont complètes et très précises.

    Une passerelle BLE a été installée au siège social de Euroglas-De Landtsheer et positionne sur une carte tous les chevalets présents sur le site.  Quand un chevalet quitte la société ou revient dans le magasin, ce déplacement est signalé automatiquement.

    Economie de temps et d’argent.

    Le système Track & Trace de HeronTrack simplifie considérablement la gestion du stock.  “Nos managers du département Logistiques ont un aperçu complet et précis de la localisation de tous nos chevalets”, confirme Monsieur De Knijf.  “Avec cette application, nous avons toujours une vue exacte sur notre stock et une gestion manuelle n’est donc plus nécessaire.  Grâce à l’automatisation des entrées et sorties de magasin, nous économisons au minimum une ½ heure par jour soit environ un gain de 10 heures par mois.  De plus, il n’est plus nécessaire d’acheter de nouveaux chevalets en remplacement de ceux qui sont manquants.  C’est ainsi que nous diminuons sensiblement nos frais de roulement.”

    Voulez-vous tester gratuitement la solution « Track & Trace » HeronTrack ?

     

     

    Le producteur de verre Euroglas-De Landtsheer a fait équiper 700 chevalets de vitrage au moyen des sensors de HeronTrack.  Ainsi, cette société a toujours un aperçu exact de son stock et peut économiser des frais de remplacement inutiles.  Dans cet article, vous découvrirez comment le système fonctionne et quels sont les avantages qui en découlent.

    Frederik De Knijf, CEO d’Euroglas-De Landtsheer nous raconte : “Un chevalet coûte entre 500,- et 750,- EUR.  Chaque année, nous devons investir pas moins de 50.000,- EUR dans le remplacement de plusieurs chevalets de vitrage, qu’ils soient abîmés, perdus, égarés ou tout simplement prêtés.  Nous souhaitons limiter, au strict minimum, ces frais importants et nous pensons que la solution la plus efficace réside dans une meilleure gestion de notre stock, nous permettant de retrouver rapidement les chevalets égarés”.

    Pose de sensors Track & Trace sur 700 chevalets de vitrage.

    C’est ainsi que la société Euroglas-De Landtsheer décida d’utiliser les sensors ‘Track & Trace’ de HeronTrack.  Ces sensors furent donc installés sur pas moins de 700 chevalets, permettant ainsi au département logistique de visualiser l’endroit exact où se trouve leur matériel, que celui-ci soit en Belgique ou même à l’étranger.

    La plus-value des sensors de HeronTrack s’est rapidement fait ressentir.  Grâce à ce nouveau système, Euroglas-De Landtsheer retrouve sans perdre de temps tous ses chevalets alors que certains étaient égarés chez des fournisseurs ou clients.

    Les sensors de HeronTrack se distinguent par leur facilité d’utilisation, leur petit format, une durée de batterie allant de 5 à 7 ans et naturellement leur excellent rapport prix/qualité.

    Comment fonctionne le système Track & Trace ?

    HeronTrack travaille sur base de deux éléments : un sensor qui est tout simplement fixé sur le chevalet (ou l’outil) et la plate-forme Software qui peut être consultée via l’application mobile ou online.  Grâce à l’application mobile, les chauffeurs de Euroglas-De Landtsheer retrouvent aisément tous les chevalets dans les environs.  Chaque mouvement est automatiquement communiqué. Simultanément, le sensor transmet 2x par jour sa position GPS vers la plate-forme.  Via cette plate-forme online, les responsables du département logistique peuvent retrouver tous les chevalets sous forme d’un rapport ou d’un rendu visuel.  A partir du moment où vous activez le modus antivol du sensor, ce dernier envoie toutes les 10 minutes un ‘update’ de sa position actuelle.  Ainsi, vous pouvez retrouver rapidement le matériel volé ou égaré.

    Envie d’en savoir plus sur le fonctionnement de notre système ‘track & trace’ ?

    Une couverture précise et une localisation étendue sur plus de 50 pays.

    Les sensors de HeronTrack communiquent via Sigfox avec le réseau public de engieM2M afin de détecter la position des chevalets.  Pas uniquement dans le Benelux mais aussi dans toute l’Europe, même à des endroits où le réseau est faible.  En outre, le réseau Sigfox RC1 garantit une couverture internationale dans plus de cinquante pays, jusqu’en Afrique et au Moyen-Orient.

    Ensuite, la technologie BLE veille à une connexion continue vers les smartphones des chauffeurs et des collaborateurs sur chantier.  Cette connexion fonctionne même à l’intérieur, de telle manière que la couverture et la position donnée sont complètes et très précises.

    Une passerelle BLE a été installée au siège social de Euroglas-De Landtsheer et positionne sur une carte tous les chevalets présents sur le site.  Quand un chevalet quitte la société ou revient dans le magasin, ce déplacement est signalé automatiquement.

    Economie de temps et d’argent.

    Le système Track & Trace de HeronTrack simplifie considérablement la gestion du stock.  “Nos managers du département Logistiques ont un aperçu complet et précis de la localisation de tous nos chevalets”, confirme Monsieur De Knijf.  “Avec cette application, nous avons toujours une vue exacte sur notre stock et une gestion manuelle n’est donc plus nécessaire.  Grâce à l’automatisation des entrées et sorties de magasin, nous économisons au minimum une ½ heure par jour soit environ un gain de 10 heures par mois.  De plus, il n’est plus nécessaire d’acheter de nouveaux chevalets en remplacement de ceux qui sont manquants.  C’est ainsi que nous diminuons sensiblement nos frais de roulement.”

    Voulez-vous tester gratuitement la solution « Track & Trace » HeronTrack ?

    GPS: Too power-hungry for small asset tracking solutions? Not necessarily.

     

    Extend the battery life of size-and power-constrained GPS asset trackers for supply chain and logistics monitoring with cloud-based positioning.

    Under the hood, the GPS-enabled asset trackers are quite simple, made up of just a few components. Inside, they feature GPS receiver, used to locate the asset using radio signals transmitted by orbiting global navigation satellite system (GNSS) satellites. They also include a wireless modem – often for 2G, 3G, or 4G LTE cellular communication – used to channel data to and from the cloud. Each of these is connected to a dedicated antenna that receives and transmits the required wireless signals.

    And finally, they contain one more component that is responsible for the lion’s share of the device’s size and weight: the battery. There’s a reason why the battery is so large: compared with the energy used for occasional data transfers the asset trackers carry out, for example over low power wide area cellular networks (LTE-M or NB-IoT), satellite-based positioning can be – dare we say it? – well, a bit of a power hog.

    A standard GNSS receiver that continuously tracks its location can drain even a generously proportioned battery pack in just a few days. Using a series of hardware and firmware-based tweaks to optimize the balance between tracking performance and power consumption, the battery longevity can be extended considerably.

    For typical use cases in size-constrained applications, including sports watches, pet and people trackers, and handheld devices that can be recharged on a daily or weekly basis, these tweaks provide sufficient longevity to make the solutions attractive to customers.

    But other use cases, particularly small industrial asset trackers, simply need more juice. In industrial asset tracking applications, managing a large fleet of GPS-enabled asset tags to keep tabs on parcels, boxes, roll cages, livestock, and across vast supply chains may only become viable if maintenance efforts, largely focused on keeping the trackers powered up, are kept to a minimum.

    Cloud-based positioning delivers maximum power autonomy

    We’ve already written about hardware- and firmware-based approaches to reduce a GNSS receiver’s power consumption on this blog. We’ve also put together a white paper presenting strategies for designing ultra-low-power GPS solutions for the IoT. In this blog, we focus on one of the strategies we briefly touched on in the white paper. It’s the approach that goes furthest in extending the mileage you can get out of GPS-enabled IoT asset tracking solutions, namely cloud-based positioning.

    First, what is cloud-based positioning? In “typical” satellite-based positioning, each step in the positioning process happens in the GNSS receiver itself – satellite signal acquisition and data download, the pseudorange calculation (yielding the estimated distance to the orbiting satellites based on the available data) to each satellite, and the final position fix. Cloud-based positioning splits up the task into two steps, resulting in exponential improvements in power consumption.

    With our u‑blox cloud-based positioning solution, step one, which includes everything up to (and including) the pseudorange calculation, still takes place on the GNSS receiver. Step two, the position calculation, takes place in the cloud, based on the pseudoranges, which are transferred to the cloud at the end of step one using any available form of wireless communication (including 4G LTE, Wi-Fi, Bluetooth, or even proprietary technologies) is relegated to the cloud.

    u‑blox CloudLocate for supply chain monitoring applications

    Using CloudLocate, which is what we call our implementation of cloud-based positioning, the GNSS receiver only needs to be switched on for three seconds in good signal conditions to achieve a positioning accuracy of under 10 meters, which is more than enough for most common industrial asset tracking applications. The position is calculated in the cloud and not on the device itself. As a result, the device never finds out its own position. Fortunately, this is perfectly aligned with the way asset tracking platforms are designed.

    Without having to retrieve GNSS aiding data, CloudLocate resolves the position of tracked assets in the cloud using a 12-50 byte data upload. The small size of the data package, achieved by preprocessing the GNSS signals on the GNSS receiver, makes the solution well-adapted for bandwidth-constrained protocols and networks and keeps associated data transfer costs low. Best of all, by reducing the power demand of the GNSS receiver up to 90 percent (for six position updates per day), CloudLocate can increase the battery life of a tracking solution fourfold (or much more if fewer daily position updates are required).

    CloudLocate offers a new degree of flexibility, expanding the scope of industrial asset tracking solutions. Because of the way we implemented the service, CloudLocate can aggregate data from other positioning technologies in addition to satellite-based positioning. Cellular network fingerprinting (which we have implemented as CellLocate), Wi-Fi sniffing, or Bluetooth indoor positioning, all offer location information when the tracker is beyond the reach of GNSS signals.

    Especially in complex supply chain monitoring applications that involve assets transported using a variety of modes of transportation with multiple stops in cargo terminals, logistics centers, or warehouses, this technological diversity can help overcome potentially nerve-racking gaps in service coverage.

     

    Learn more about CloudLocate, our cloud-based positioning service

    To find out if CloudLocate is the right service for your application, head over to our on-demand webinar, in which we show how positioning in the cloud can help you strike the optimal balance between battery life, position accuracy, and update rate. The webinar also covers the basics behind the technology and explores some use cases that stand to benefit from it. And to go deeper, reach out to our sales team or fill out a project information form and let us know what you are working on. We’ll get back to you as quickly as possible.

    Until then, stay tuned for the next blog in our series, which will focus on tracking assets at rest, both indoors and outdoors.

    Diego Grassi

    Senior Manager Application Marketing, Industrial Market Development, u‑blox

    Courtesy of u-blox

    IoT Applications in Construction

    The construction industry is bringing real-time information into processes that are centuries old. Internet of Things (IoT) devices and sensors are collecting job site data in a more affordable, efficient and effective way than previously imaginable.

    The construction job site is now ripe for fundamental changes that enable productivity, safety, process improvement and new tools. The Internet of Things (IoT) is allowing for the deployment of simple low power sensors that are able to communicate cost-effectively. As IoT continues to become more ubiquitous, it’s having a greater impact on how the construction industry is turning around. IoT makes it possible for every stakeholder to understand what’s happening at every stage of the construction process in real-time from planning to actual construction, post-construction and how the building is operated during service.

    While the construction industry is changing at a glacial pace, construction companies who are adopting technology to successfully address common workplace concerns and streamline processes are benefitting from increased efficiencies and improved responsiveness to the increasing demands of the industry. Flat productivity, decreased margins, more schedule overruns and increased competition are some of the obvious reasons construction companies should consider the adoption of IoT technology and digitization. Data has now become a critical asset for business, and informed decisions can only be data-driven.

    Generally, productivity, maintenance, security and safety appear to be the leading drivers of IoT adoption in the construction industry.

    Productivity

    The construction sector is conditioned by deadlines and targets. It’s mandatory to avoid backlogs because they result in budget increases. IoT can enable more readiness and efficiency thus improving productivity. IoT leaves people with less menial work, and, instead, they’re allocated more time to interact with project owners and amongst themselves, generating new ideas to improve project delivery and customer satisfaction.
    Construction requires an adequate supply of materials to ensure the smoothness of the project. However, the late supply of materials often occurs at the site due to poor scheduling caused by human error. Through IoT, the supply unit is fitted with a suitable sensor it’s possible to automatically determine the quantity and make automatic orders or raise alarms.

    Maintenance

    Power and fuel consumption will result in wastage if not actively managed, and that will impact the overall cost of the project. Through the availability of real-time information, it becomes possible to know the status of every asset, to schedule maintenance stops or refueling and turn-off idle equipment. Further, field sensors help to prevent problems from happening, which reduces warranty claims, helping the bottom line and keeping customers happy. Beyond notifications for decreasing stocks, sensors can be used to monitor materials condition like the suitability of the temperature or humidity of the item/environment, handling issues, damage and expiration. Equipment suppliers have had to evolve from just being suppliers to partners who continuously monitor and maintain equipment, leaving clients to focus on their core business.

    Safety and Security

    Some of the biggest challenges encountered on a construction job site are theft and safety. Human security agents are not adequate to monitor a huge site properly. Using IoT enabled tags, any material or theft of items is easily resolved as these sensors will notify the current location of the materials or item. It’s no longer necessary to send a human agent out to check out everything.

    IoT allows for the creation of a digital real-time job site map together with the updated risks associated with the works and notifies every worker when getting closer to any risk or entering a dangerous environment. For example, monitoring the air quality in an enclosed space is critical for workplace safety. IoT technologies will not only prevent staff from being exposed to dangerous conditions but can also detect those conditions before or as they happen. With real-time IoT data, workers are empowered to be more predictive about job-site issues and prevent situations that could lead to a safety incident and lost time.

    Handling equipment and machinery for too long may also cause workers to experience fatigue, which in turn disturbs their concentration and productivity. IoT makes it possible to monitor signs of distress like abnormal pulse rates, elevations and user location.

    Multi-Technology: The Future of Geolocation

    Successful IoT geolocation requires multi-technology solutions that leverage cellular, Bluetooth, LP-GPS, WiFi, and more while focusing on next-gen LPWAN.

    In the big world of IoT, location tracking is the next frontier! Location tracking for humans is already an integral part of our lives, especially for navigation. Traditional technologies enabling this are not only expensive; they also have technical boundaries that prevent successful scaling. For IoT geolocation to become a reality, it must be extremely accurate, very low cost, and significantly low touch.

    Where Is the Market?

    Research and Markets predict revenues from “Geo IoT” will reach $49 billion by 2021.

    Research and Markets report in “Geo IoT Technologies, Services, and Applications Market Outlook” that just as location determination has become an essential element of personal communications, so shall presence detection and location-aware technologies be key to the long-term success of IoT. They add that Geo IoT will positively impact many industry verticals.

    Connecting IoT objects is already a large market growing exponentially with the mix of unlicensed Low-Power Wide Area Network (LPWAN) technologies such as LoRaWAN, and combined more recent introduction of Cellular IoT technologies such as NB-IoT and LTE-M. Adding Geolocation to this introduces a whole range of new applications not possible before. Some of these applications are:

    1. Asset management
    2. Fleet management
    3. Anti-theft scooter/bike rental
    4. Logistics/parcel bags tracking
    5. Worker safety for oil and gas
    6. Elderly and disabled care
    7. Tracking solution for skiers
    8. Pets and animal tracking

    The above applications represent a large existing market that can only be captured with extremely low cost and low power trackers. 

    The Challenges of Asset Tracking

    Whether it’s railway cars, truck trailers, or containers, tracking valuable assets on the move is a pain point for many large, distributed organizations involved in logistics and supply chain management. These large organizations typically rely on partners such as distributors to register check-in and check-out events correctly.

    The registration process at specific checkpoints is usually manual, intermittent, and subject to human error.  To address this issue, an IoT low-power asset tracking system that leverages Low Power Wide Area Network (LPWAN) trackers brings a “timeless” checkpoint solution. Specifically, LoRaWAN™-based trackers, due to their low power, low cost and lightweight, standardized infrastructure, provide the first truly reliable tracking solution that allows logistics operators to reduce downtime during transportation. 

    In the logistics sector, many business use cases suffer additional costs due to inefficient utilization of assets. Transport companies need to invest in freight railway cars; car logistics companies need to invest in truck trailers; and, of course, there are the standard containers and pallets.

    The profitability of #AssetTracking business use cases directly depends on the minimization of asset downtime: every day or hour lost in a warehouse, lot, or rail station reduces the given asset’s #profit potential. || #IoT @ActilityCLICK TO TWEET

    However, measuring this downtime is also a challenge. Traditional solutions involved cellular or satellite trackers, which require significant CAPEX, but perhaps more importantly also ongoing OPEX due to battery replacements and connectivity costs. In some cases, trackers are located in hard-to-reach areas especially when mounted on railroad cars, or in oil and gas rigs, which make it very costly to replace batteries—especially if there are hundreds of thousands of trackers deployed in the field.

    For now, at least, humans do battery replacement. It’s one of the dominating OPEX factors in the Total Cost of Ownership ( TCO) of the whole IoT solution. These replacement costs actually made it difficult to justify the mass adoption of conventional geolocation solutions in the logistics sector.

    LPWAN Trackers: a Game Changer

    LoRaWAN is the LPWAN connectivity standard developed by LoRa Alliance—primarily for unlicensed ISM spectrum—to disrupt both existing technology and business models.

    On the technology front, LoRaWAN’s main impact pertains to a drastic reduction in power consumption. Reducing battery usage ultimately affects OPEX-related to ongoing maintenance. It also creates new opportunities for more dynamic tracking, as communication events are less costly.

    On the business model side, logistics companies can now trade off between CAPEX and OPEX: most LPWAN systems operate within an unlicensed band. For example, the leading LoRaWAN™ technology operates in the 915MHz band in the US, the 868MHz band in Europe, and equivalent ISM bands in other parts of the world. This means that logistics companies can invest in their own wireless networks to reduce or eliminate variable connectivity costs.

    The cost of LPWAN network gateways has decreased due to higher production volumes. They’re now affordable even for very small logistic centers, such as a car distributor.

    Next Generation LPWAN trackers

    The potential of LPWAN-enabled tracking requires a new generation of hardware. The lower radio frequency and lower power consumption are only parts of a massive effort to decrease the power consumption of entire IoT systems. In order to achieve the latter, we would need to develop a “multi-technology geolocation tracker platform” that can combine GPS, Low-Power GPS, WiFi Sniffing, WiFi fingerprinting, and Bluetooth. The goal is to reduce overall power consumption while providing location information opportunistically in a variety of scenarios (e.g. indoor/outdoor, urban/rural, slow/fast moving, and so on).

    Another key factor of such a multi-technology solution is the usage of LPWAN technologies such as LoRaWAN, NB-IoT, and LTE-M for backhauling geolocation data to the cloud. This is the key. Traditional cellular technologies, such as 2G/3G/4G, are just too power hungry to meet the target goal of 5-10 year battery lifetime. However, there will be licensed Cellular IoT options based on NB-IoT/LTE-M that will also be used for some of the applications.

    Actility argues, “Merging an IoT network solution like LoRaWAN with multi-mode geolocation technologies for outdoor and indoor positioning would increase battery lifetime at least ten times more than the standard cellular solution using GSM/AGPS.”

    As demonstrated below, LoRaWAN and LP-GPS (AGPS/GPS) significantly increases battery lifetime.

    Image Credit: Actility

    A Multi-Technology Future for Geolocation

    The future of IoT geolocation will require a commitment to robust multi-technology development. We’ll need multi-technology cloud platforms that will intelligently combine Over-The-Top (OTT) geolocation technologies—such as GPS, Low-Power GPS, WiFi, and Bluetooth—with network-based TDoA geolocation technologies using LoRaWAN and/or cellular. Such innovations require close cooperation between public network operators and geolocation service providers.